1 A cross-disorder analysis of CNVs finds novel loci and dose-dependent relationships 2 of genes to psychiatric traits

- 3 Omar Shanta^{1,2}, Marieke Klein^{2,3,4}, Molly Sacks^{1,2}, Jeffrey R. MacDonald^{5,6}, Adam Maihofer^{2,7,8},
- 4 Mohammad Ahangari², Worrawat Engchuan^{5,6}, Bhooma Thiruvahindrapuram^{5,6}, James Guevara²,
- 5 Oanh Hong², Guillaume Huguet⁹, Ida Sønderby^{10,11,12}, Maria Kalyuzhny², Mark J. Adams¹³, Rolf
- 6 Adolfsson¹⁴, Ingrid Agartz^{15,16,17}, Allison E. Aiello¹⁸, Martin Alda^{19,20}, Judith Allardyce²¹, Ananda B.
- 7 Amstadter²², Till F.M. Andlauer²³, Ole A. Andreassen^{10,12,24}, María S. Artigas^{25,26,27,28}, S. Bryn
- 8 Austin^{29,30,31}, Muhammad Ayub³², Dewleen G. Baker², Nick Bass³³, Bernhard T. Baune^{34,35,36},
- 9 Maximilian Bayas 37 , Klaus Berger 38 , Joanna M. Biernacka 39,40 , Tim Bigdeli 41 , Jonathan I. Bisson 42 ,
- 10 Douglas Blackwood²¹, Marco Boks⁴³, David Braff², Elvira Bramon³³, Gerome Breen⁴⁴, Tanja Brueckl⁴⁵,
- **11** Richard A. Bryant⁴⁶, Cynthia M. Bulik^{47,48,49}, Joseph Buxbaum⁵⁰, Murray J. Cairns^{51,52}, Jose M.
- 12 Caldas-de-Almeida⁵³, Megan Campbell⁵⁴, Dominique Campion⁵⁵, Vaughan J. Carr^{56,57}, Enrique
- 13 Castelao⁵⁸, Boris Chaumette⁵⁹, Sven Cichon⁶⁰, David Cohen^{61,62}, Aiden Corvin⁶³, Nicholas Craddock⁶⁴,
- 14 Jennifer Crosbie^{65,66}, Darrina Czamara⁶⁷, Udo Dannlowski^{68,69}, Franziska Degenhardt⁶⁰, Douglas L.
- 15 Delahanty⁷⁰, Astrid Dempfle⁷¹, Guillaume Desachy^{72,73}, Arianna Di Florio⁷⁴, Faith B. Dickerson⁷⁵,
- 16 Srdjan Djurovic^{12,76,77}, Katharina Domschke⁷⁸, Lisa Douglas⁷⁹, Ole K. Drange^{76,80}, Laramie E.
- 17 Duncan^{81,82}, Howard J. Edenberg^{83,84}, Tonu Esko⁸⁵, Steve Faraone⁸⁶, Norah C. Feeny⁸⁷, Andreas J.
- 18 Forstner^{88,89,90,91,92}, Barbara Franke^{93,94}, Mark Frye⁹⁵, Dong-jing Fu⁹⁶, Janice M. Fullerton^{97,98}, Anna
- 19 Gareeva^{100,101,102,99}, Linda Garvert¹⁰³, Justine M. Gatt⁴⁶, Pablo Gejman¹⁰⁴, Daniel H. Geschwind¹⁰⁵, Ina
- 20 Giegling¹⁰⁶, Stephen J. Glatt¹⁰⁷, Joe Glessner^{108,109,110}, Fernando S. Goes¹¹¹, Katherine Gordon-Smith¹¹²,
- 21 Hans Grabe¹⁰³, Melissa J. Green¹¹³, Michael F. Green^{114,115}, Tiffany Greenwood², Maria
- 22 Grigoroiu-Serbanescu¹¹⁶, Raquel E. Gur¹¹⁷, Ruben C. Gur¹¹⁷, Jose Guzman-Parra¹¹⁸, Jan Haavik¹¹⁹, Tim
- 23 Hahn⁶⁹, Hakon Hakonarson^{108,109,110}, Joachim Hallmayer^{120,121}, Marian L. Hamshere¹²², Annette M.
- 24 Hartmann¹²³, Arsalan Hassan¹²⁴, Caroline Hayward¹²⁵, Johannes Hebebrand^{126,127}, Sian M.J.
- 25 Hemmings^{128,129}, Stefan Herms⁶⁰, Marisol Herrera-Rivero^{130,35,68}, Anke Hinney^{126,131,132}, Georg
- 26 Homuth¹³³, Andrés Ingason¹³⁴, Lucas T. Ito^{135,136,137,138,139}, Nakao Iwata¹⁴⁰, Ian Jones¹⁴¹, Lisa A. Jones¹¹²,
- 27 Lina Jonsson¹⁴², Erik G. Jönsson^{15,16}, René S. Kahn¹³⁷, Robert Karlsson¹⁴³, Milissa L. Kaufman^{144,145},
- 28 John R. Kelsoe², James L. Kennedy^{146,66}, Anthony King¹⁴⁷, Tilo Kircher^{148,149}, George Kirov¹⁵⁰, Per
- 29 Knappskog^{151,152}, James A. Knowles^{153,154}, Nene Kobayashi¹⁵⁵, Karestan C. Koenen¹⁵⁶, Bettina Konte¹²³,
- 30 Mayuresh Korgaonkar¹⁵⁷, Kaarina Kowalec¹⁴³, Marie-Odile Krebs⁵⁹, Mikael Landén^{142,143}, Claudine
- 31 Laurent-Levinson^{158,62}, Lauren A. Lebois^{145,159}, Doug Levinson⁸¹, Cathryn Lewis^{160,44}, Qingqin Li⁹⁶,
- 32 Israel Liberzon¹⁶¹, Greg Light², Sandra K. Loo¹⁶², Yi Lu^{143,163}, Susanne Lucae⁴⁵, Charles Marmar¹⁶⁴,
- 33 Nicholas G. Martin¹⁶⁵, Fermin Mayoral¹¹⁸, Andrew M. McIntosh¹⁶⁶, Katie A. McLaughlin¹⁶⁷, Samuel A.
- 34 McLean^{168,169}, Andrew McQuillin³³, Sarah E. Medland^{170,171,172}, Andreas Meyer-Lindenberg¹⁷³, Vihra
- 35 Milanova¹⁷⁴, Philip B. Mitchell¹¹³, Esther Molina^{175,176}, Bryan Mowry^{177,178}, Bertram
- 36 Muller-Myhsok^{179,180}, Niamh Mullins^{136,137,138}, Robin Murray¹⁸¹, Markus M. Nöthen⁶⁰, John I.
- 37 Nurnberger Jr^{182,183}, Kevin S. O'Connell^{24,76}, Roel A. Ophoff¹⁸⁴, Holly K. Orcutt¹⁸⁵, Michael J. Owen¹⁸⁶,
- 38 Aarno Palotie 187,188,189, Carlos Pato 190, Michele Pato 190, Joanna Pawlak 191, Triinu Peters 126,131,132, Tracey
- 39 L. Petryshen¹⁹², Giorgio Pistis⁵⁸, James B. Potash¹¹¹, John Powell¹⁹³, Martin Preisig⁵⁸, Digby Quested¹⁹⁴,
- 40 Josep A. Ramos-Quiroga^{25,26,27,28}, Andreas Reif¹⁹⁵, Kerry J. Ressler^{145,196,197}, Marta Ribasés^{25,26,27,28},
- 41 Marcella Rietschel¹⁹⁸, Victoria B. Risbrough^{2,7}, Margarita Rivera^{175,199}, Alex O. Rothbaum^{196,200},
- 42 Barbara O. Rothbaum¹⁹⁶, Dan Rujescu¹⁰⁶, Takeo Saito¹⁴⁰, Alan R. Sanders²⁰¹, Russell J. Schachar^{65,66},
- 43 Peter R. Schofield¹¹³, Eva C. Schulte^{202,203,204,205,60}, Thomas G. Schulze²⁰⁴, Laura J. Scott²⁰⁶, Soraya
- 44 Seedat^{207,208}, Christina Sheerin²², Jianxin Shi²⁰⁹, Pamela Sklar²¹⁰, Susan Smalley^{162,211}, Olav B.
- 45 Smeland^{24,76}, Jordan W. Smoller^{212,213}, Edmund Sonuga-Barke²¹⁴, David St. Clair²¹⁵, Nils Eiel
- 46 Steen^{216,24,76}, Dan Stein²¹⁷, Frederike Stein^{148,149}, Murray B. Stein^{2,218,219}, Fabian Streit^{173,198,220,221}, Neal
- 47 Swerdlow², Florence Thibaut^{222,223}, Johan H. Thygesen^{224,33}, Ilgiz Timerbulatov^{102,225,226}, Claudio
- 48 Toma^{227,228}, Edward Trapido²²⁹, Micheline Tremblay²³⁰, Ming T. Tsuang², Monica Uddin²³¹, Marquis P.
- 49 Vawter²³², John B. Vincent^{146,66}, Henry Völzke²³³, James T. Walters¹⁸⁶, Cynthia S. Weickert^{113,97}, Lauren

```
50 A. Weiss<sup>73</sup>, Myrna M. Weissman<sup>234,235</sup>, Thomas Werge<sup>236</sup>, Stephanie H. Witt<sup>198,220</sup>, Miguel Xavier<sup>237</sup>, 51 Robert Yolken<sup>238</sup>, Ross M. Young<sup>239,240</sup>, Tetyana Zayats<sup>241,242,243</sup>, Lori A. Zoellner<sup>244</sup>, AGP Consortium,
52 PEIC Psychosis Endophenotypes International Consortium, ADHD Working Group of the Psychiatric
53 Genomics Consortium, Autism Working Group of the Psychiatric Genomics Consortium, Bipolar
54 Disorder Working Group of the Psychiatric Genomics Consortium, Major Depressive Disorder
55 Working Group of the Psychiatric Genomics Consortium, PTSD Working Group of the Psychiatric
56 Genomics Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, CNV
57 Working Group of the Psychiatric Genomics Consortium, Kimberley Kendall<sup>64</sup>, Brien Riley<sup>245</sup>, Naomi
58 R. Wray<sup>246,247</sup>, Michael C. O'Donovan<sup>64</sup>, Patrick F. Sullivan<sup>143,248</sup>, Sandra Sanchez-Roige<sup>2,249,250</sup>, Caroline
59 M. Nievergelt<sup>2,251</sup>, Sébastien Jacquemont<sup>252,253</sup>, Stephen W. Scherer<sup>254,255,5,6</sup>, Jonathan Sebat<sup>2,249,256,257</sup>*
60 <sup>1</sup>Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla,
61 CA, USA, <sup>2</sup>Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,
62 <sup>3</sup>Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands,
63 <sup>4</sup>Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center,
64 Nijmegen, The Netherlands, <sup>5</sup>Program in Genetics and Genome Biology, The Hospital for Sick
65 Children, Toronto, ON, Canada, <sup>6</sup>The Centre for Applied Genomics, The Hospital for Sick Children,
66 Toronto, ON, Canada, <sup>7</sup>Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress
67 and Mental Health, San Diego, CA, USA, 8Veterans Affairs San Diego Healthcare System, Research
68 Service, San Diego, CA, USA, 9CHU Sainte-Justine Azrieli Research Center, Université de Montréal,
69 Montreal, QC, Canada, <sup>10</sup>Centre for Precision Psychiatry, University of Oslo, Oslo, Norway,
70 <sup>11</sup>Department of Medical Genetics, Oslo University Hospital, Oslo, Norway, <sup>12</sup>KG Jebsen Centre for
71 Neurodevelopmental disorders, University of Oslo, Oslo, Norway, <sup>13</sup>Centre for Clinical Brain
72 Sciences, University of Edinburgh, Edinburgh, UK, <sup>14</sup>Department of Clinical Science, Umeå
73 University, Umeå, Sweden, <sup>15</sup>Institute of Clinical Medicine, University of Oslo, Oslo, Norway, <sup>16</sup>Centre
74 for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm
75 Health Care Services, Stockholm Region, Stockholm, Sweden, <sup>17</sup>Department of Psychiatric Research,
76 Diakonhjemmet Hospital, Oslo, Norway, <sup>18</sup>Department of Epidemiology, Columbia University, Robert
77 N Butler Columbia Aging Center, New York, NY, US, 19 National Institute of Mental Health, Klecany,
78 Czech Republic, <sup>20</sup>Department of Psychiatry, Dalhousie University, Halifax, NS, Canada, <sup>21</sup>Division of
79 Psychiatry, University of Edinburgh, Edinburgh, UK, <sup>22</sup>Department of Psychiatry, Virginia Institute
80 for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA,
81 <sup>23</sup>Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of
82 Munich, Munich, Germany, <sup>24</sup>Division of Mental Health and Addiction, Oslo University Hospital, Oslo,
83 Norway, <sup>25</sup>Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron
84 Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain, <sup>26</sup>Department of
85 Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain, <sup>27</sup>Biomedical Network
86 Research Centre on Mental Health (CIBERSAM), Madrid, Spain, <sup>28</sup>Department of Genetics,
87 Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain,
88 <sup>29</sup>Boston Children's Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA,
89 <sup>30</sup>Department of Pediatrics, Harvard Medical School, Boston, MA, USA, <sup>31</sup>Department of Social and
90 Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 32 University
91 College London, London, UK, <sup>33</sup>Division of Psychiatry, University College London, London, UK. <sup>34</sup>The
92 Flore Institute of Neuroscience and Mental Health, Melbourne, Australia, 35 Department of
93 Psychiatry, University of Münster, Münster, Germany, <sup>36</sup>Department of Psychiatry, University of
```

```
94 Melbourne, Melbourne, Australia, <sup>37</sup>Department of Psychiatry, Psychosomatic Medicine and
 95 Psychotherapy; University Hospital Frankfurt - Goethe University, Frankfurt, Germany, <sup>38</sup>Institute of
 96 Epidemiology and Social Medicine, University of Münster, Münster, Germany, <sup>39</sup>Department of
 97 Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA, 40 Department of Quantitative Health
 98 Sciences, Mayo Clinic, Rochester, MN, USA, <sup>41</sup>Department of Psychiatry and Behavioral Sciences,
 99 Institute for Genomics in Health, State University of New York Downstate Health Sciences
100 University, Brooklyn, NY, USA, 42 Cardiff University, National Centre for Mental Health, MRC Centre
101 for Psychiatric Genetics and Genomics, Cardiff, UK, <sup>43</sup>University Medical Center, Division of
102 Neurosciences, Department of Psychiatry, Heidelberglaan, Utrecht, the Netherlands, 44 Social, Genetic
103 and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's
104 College London, London, UK, <sup>45</sup>Department of Translational Research in Psychiatry, Max Planck
105 Institute of Psychiatry, Munich, Germany, 46School of Psychology, Faculty of Science, University of
106 New South Wales, Sydney, New South Wales, Australia, 47 Department of Medical Epidemiology and
107 Biostatistics, Karolinska Institutet, Sweden, <sup>48</sup>Department of Nutrition, University of North Carolina
108 at Chapel Hill, Chapel Hill, NC, USA, 49 Department of Psychiatry, University of North Carolina at
109 Chapel Hill, Chapel Hill, NC, USA, 50 Seaver Autism Center, Department of Psychiatry, Icahn School of
110 Medicine at Mount Sinai, New York, NY, USA, 51 School of Biomedical Sciences and Pharmacy.
111 University of Newcastle, Callaghan, NSW, Australia, 52 Precision Medicine Research Program, Hunter
112 Medical Research Institute, Newcastle, New South Wales, Australia, 53 Chronic Diseases Research
113 Centre (CEDOC), Lisbon Institute of Global Mental Health, Lisbon, Portugal, <sup>54</sup>Department of
114 Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa, 55 INSERM
115 EPI 9906, Faculté de Médecine et de Pharmacie, Institut Fédératif de Recherches Multidisciplinaires
116 sur les peptides, Rouen, France, <sup>56</sup>Department of Psychiatry, Monash University, Melbourne,
117 Australia, <sup>57</sup>School of Psychiatry, University of New South Wales, Sydney, New South Wales,
118 Australia, <sup>58</sup>Psychiatric Epidemiology and Psychopathology Research Center, Department of
119 Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland,
<sup>120</sup> <sup>59</sup>Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (INSERM U1266), GHU
121 Paris Psychiatrie et Neurosciences, Paris, France, <sup>60</sup>Institute of Human Genetics, University of Bonn,
122 School of Medicine & University Hospital Bonn, Bonn, Germany, 61CNRS UMR 7222, Institute for
123 Intelligent Systems and Robotics, Sorbonne University, Paris, France, <sup>62</sup>Department of Child and
124 Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne
125 University, Paris, France, <sup>63</sup>Department of Psychiatry, Trinity College Dublin, Dublin, Ireland,
126 64Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and
127 Clinical Neurosciences, Cardiff University, Cardiff, UK, 65 Neurosciences & Mental Health, The
128 Hospital for Sick Children, Toronto, ON, Canada, <sup>66</sup>Department of Psychiatry, University of Toronto,
129 Toronto, ON, Canada, <sup>67</sup>Department Genes and Environment, Max-Planck-Institute of Psychiatry,
    Munich, Germany, <sup>68</sup> Joint Institute for Individualisation in a Changing Environment (JICE),
131 University of Münster and Bielefeld University, Münster, Germany, <sup>69</sup>Institute for Translational
132 Psychiatry, University of Münster, Münster, Germany, 70 Department of Psychological Sciences, Kent
133 State University, Kent, OH, USA, 71 Institute of Medical Informatics and Statistics, UKSH University
134 Hospital of Schleswig-Holstein Kiel Campus, Arnold-Heller-Strasse, Kiel, Germany, 72Data Science &
135 Biometrics, Research & Development, Pierre Fabre Group, Toulouse, France, 73 Institute for Human
136 Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences,
```

137 University of California San Francisco, San Francisco, CA, USA, 74School of Medicine, Division of 138 Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK, 75Sheppard Pratt 139 Health System, Baltimore, MD, USA, ⁷⁶Centre for Precision Psychiatry, Oslo University Hospital & 140 University of Oslo, Oslo, Norway, 77 Department of Medical Genetics, Oslo University Hospital and 141 University of Oslo, Oslo, Norway, ⁷⁸Department of Psychiatry and Psychotherapy, University of 142 Freiburg, Freiburg, Germany, ⁷⁹Cheshire and Wirral Partnership NHS Trust, Ellesmere Port, 143 Cheshire, UK, 80 Department of Psychiatry, Sørlandet hospital, Arendal/Kristiansand, Norway, 144 81 Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA, 82 Wu 145 Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA, 83 Department of Medical and 146 Molecular Genetics, Indiana University, Indianapolis, IN, USA, 84 Department of Biochemistry & 147 Molecular Biology, Indiana University, Indianapolis, IN, USA, 85 Estonian Genome Centre, Institute of 148 Genomics, University of Tartu, Tartu, Estonia, 86 Departments of Psychiatry and of Neuroscience and 149 Physiology, SUNY Upstate Medical University, Syracuse, New York, NY, USA, 87 Department of 150 Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA, 88 Department of 151 Psychiatry (UPK), University of Basel, Basel, Switzerland, 89 Institute of Human Genetics, University 152 of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany, 90 Centre for Human 153 Genetics, University of Marburg, Marburg, Germany, 91 Department of Biomedicine, University of 154 Basel, Basel, Switzerland, 92 Institute of Medical Genetics and Pathology, University Hospital Basel, 155 Basel, Switzerland, 93 Department of Human Genetics, Donders Institute of Brain, Cognition and 156 Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands, 94 Department of 157 Medical Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands, 95Department of Psychiatry and Psychology, Mayo 159 Clinic, Rochester, MN, US, 96 Janssen Research and Development, LLC, 97 Neuroscience Research 160 Australia, Randwick, New South Wales, Australia, 98 School of Biomedical Sciences, University of New 161 South Wales, Sydney, New South Wales, Australia, 99FSBSI Institute of Biochemistry and Genetics of 162 the Ufa Federal Research Center of the Russian Academy of Sciences, Russia, 100 FSBEI HE Kemerovo 163 State University, Russia, 101 FSBEI HE Bashkir State Medical University of Health Ministry of Russia, 164 Russia, ¹⁰²FSBEI APGE Russian Medical Academy of Continuing Professional Education of the 165 Ministry of Health of Russia, Russia, 103 Department of Psychiatry and Psychotherapy, University 166 Medicine Greifswald, Greifswald, Germany, 104 Department of Psychiatry and Behavioral 167 Neuroscience, University of Chicago, Chicago, IL, USA, 105 School of Medicine, University of California 168 Los Angeles, Los Angeles, CA, USA, 106 Department of Psychiatry and Psychotherapy, Comprehensive 169 Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, 170 Austria, ¹⁰⁷Director, Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), 171 SUNY Upstate Medical University, 108 Division of Human Genetics, Children's Hospital of Philadelphia, 172 Philadelphia, PA, USA, ¹⁰⁹Department of Pediatrics, Perelman School of Medicine, University of 173 Pennsylvania, Philadelphia, PA, USA, 110 Center for Applied Genomics, Children's Hospital of 174 Philadelphia, Philadelphia, PA, USA, 111 Department of Psychiatry and Behavioral Sciences, Johns 175 Hopkins University School of Medicine, Baltimore, MD, USA, 112 Psychological Medicine, University of 176 Worcester, Worcester, UK, ¹¹³Discipline of Psychiatry and Mental Health, School of Clinical Medicine, 177 Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia, 178 114 Center on Enhancement of Community Integration for Homeless Veterans, VA Greater Los 179 Angeles Healthcare System, Los Angeles, CA, USA, 115 Semel Institute for Neuroscience and Human

```
180 Behavior, University of California Los Angeles, Los Angeles, CA, USA, 116 Psychiatric Genetics
181 Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania, 117 Department
182 of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA, 118 Unidad de Gestión Clínica de
183 Salud Mental del Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de
184 Málaga y Plataforma en Nanomedicina - IBIMA Plataforma Bionand, Málaga, Spain, 119 JanK.G. Jebsen
185 Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen,
186 Norway, <sup>120</sup>Department of Psychiatry and Behavioral Sciences (JKF, PL, BJ, MWM, JH, JY), Stanford
187 University School of Medicine, Stanford, CA, USA, 121 VISN 21 Mental Illness Research, Education, and
188 Clinical Center (JKF, PL, MWM, JH, JY), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA,
189 USA, 122 Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of
190 Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK, <sup>123</sup>Department of
191 Psychiatry and Psychotherapy, Medical University of Vienna, Austria, <sup>124</sup>University of Peshawar,
192 Peshawar, Pakistan, 125MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine,
193 Edinburgh, UK, 126Center for Translational Neuro- and Behavioral Sciences, University Hospital
194 Essen, University of Duisburg-Essen, Essen, Germany, 127 Department of Child and Adolescent
195 Psychiatry, Psychotherapy and Psychosomatics, University Hospital Essen (AöR), University of
196 Duisburg-Essen, Essen, Germany, 128 SAMRC Genomics of Brain Disorders Research Unit,
197 Stellenbosch University, Cape Town, Western Cape, ZA, <sup>129</sup>Faculty of Medicine and Health Sciences,
198 Department of Psychiatry, Stellenbosch University, Cape Town, Western Cape, ZA, <sup>130</sup>Department of
199 Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany,
200 <sup>131</sup>Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, University of
201 Duisburg-Essen, Virchowstr, Essen, Germany, <sup>132</sup>Section of Molecular Genetics of Mental Disorders,
202 LVR-University Clinic Essen, Essen, Germany, <sup>133</sup>Interfaculty Institute for Genetics and Functional
203 Genomics, University Medicine Greifswald, Greifswald, Germany, 134 Institute of Biological Psychiatry,
204 Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark, <sup>135</sup>Department of
205 Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil, 136 Charles Bronfman Institute
206 for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,
207 <sup>137</sup>Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,
208 <sup>138</sup>Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New
209 York, NY, USA, 139 Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São
210 Paulo, Brazil, <sup>140</sup>Department of Psychiatry, Fujita Health University School of Medicine, Toyoake,
211 Aichi, Japan, 141 Cardiff University, National Centre for Mental Health, Cardiff University Centre for
212 Psychiatric Genetics and Genomics, Cardiff, UK, 142 Institute of Neuroscience and Physiology,
213 University of Gothenburg, Gothenburg, Sweden, 143 Department of Medical Epidemiology and
214 Biostatistics, Karolinska Institutet, Stockholm, Sweden, 144 McLean Hospital, Belmont, MA, USA,
215 <sup>145</sup>Department of Psychiatry, Harvard Medical School, Boston, MA, USA, <sup>146</sup>Campbell Family Mental
216 Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, 147 The Ohio
217 State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH,
218 USA, 148 Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,
219 <sup>149</sup>Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany, <sup>150</sup>Department of
220 Psychological Medicine and Neurology, MRC Centre for Neuropsychiatric Genetics and Genomics,
221 School of Medicine, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff,
222 UK, <sup>151</sup>Department of Clinical Science, University of Bergen, Bergen, Norway, <sup>152</sup>Department of
```

223 Medical Genetics, Haukeland University Hospital, Bergen, Norway, 153 Human Genetics Institute of 224 New Jersey (HGINJ), Rutgers University, Piscataway, NJ, USA, 154 Department of Genetics, Rutgers 225 University, Piscataway, NJ, USA, 155Goethe University Frankfurt, University Hospital, Department of 226 Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany, ¹⁵⁶Department of 227 Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA., 157 Brain Dynamics 228 Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, 229 Australia, 158 Childhood Genetic Disease Laboratory, INSERM UMR S933, Trousseau University Hospital, Paris, France, ¹⁵⁹McLean Hospital, Center of Excellence in Depression and Anxiety 231 Disorders, Belmont, MA, USA, 160 Department of Medical and Molecular Genetics, Faculty of Life 232 Sciences and Medicine, King's College London, London, UK, 161 Department of Psychiatry and 233 Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA, 162 Department of 234 Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA, 235 ¹⁶³College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada, ¹⁶⁴New York University, 236 Grossman School of Medicine, New York City, NY, USA, 165 Brain and Mental Health Program, QIMR 237 Berghofer Institute of Medical Research, Brisbane, Australia, 166 Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK, ¹⁶⁷Department of Psychology, Harvard University, Boston, MA, USA, ¹⁶⁸Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA, ¹⁶⁹Department of Anesthesiology, UNC Institute for Trauma 241 Recovery, Chapel Hill, NC, USA, ¹⁷⁰School of Psychology, The University of Queensland, Brisbane, 242 Queensland, Australia, 171 Mental Health and Neuroscience, QIMR Berghofer Medical Research 243 Institute, Brisbane, Queensland, Australia, 172School of Psychology and Counselling, Queensland 244 University of Technology, Brisbane, Queensland, Australia, 173 Department of Psychiatry and 245 Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg 246 University, Mannheim, Germany, 174 Department of Psychiatry, Faculty of Medicine, Medical 247 University of Sofia, University Hospital Alexandrovska, Bulgaria, ¹⁷⁵Institute of Neurosciences 248 'Federico Olóriz', Biomedical Research Centre (CIBM), University of Granada, and Instituto de 249 Investigación Biosanitaria, Ibs Granada, Granada, Spain., 176 Department of Nursing, Faculty of Health 250 Sciences, University of Granada, Granada, Spain., ¹⁷⁷Department of Psychiatry, University of Queensland, Brisbane, Australia, 178 Queensland Centre for Schizophrenia Research, Wolston Park 252 Hospital, Wacol, Queensland, Australia, 179 Max Planck Institute of Psychiatry, Munich, Germany, ¹⁸⁰HMNC Holding GmbH, Munich, Germany, ¹⁸¹Department of Psychosis Studies, Institute of 254 Psychiatry, Psychology and Neuroscience, King's College London, UK, 182 Stark Neurosciences 255 Research Institute, ¹⁸³Departments of Psychiatry & Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, ¹⁸⁴Department of Psychiatry and Biobehavioral Science and Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, ¹⁸⁵Department of Psychology, Northern Illinois University, DeKalb, IL, USA, 186Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, 261 CF24 4HQ, ¹⁸⁷The Stanley Center for Psychiatric Research and Program in Medical and Population 262 Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA, ¹⁸⁸Analytic and 263 Translational Genetics Unit, Department of Medicine, Department of Neurology, and Department of 264 Psychiatry, Massachusetts General Hospital, Boston, MA, USA, 189 Institute for Molecular Medicine 265 Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,

```
266 <sup>190</sup>Department of Psychiatry, Rutgers University, Piscataway, NJ, USA, <sup>191</sup>Department of Psychiatric
267 Genetics, Poznan University of Medical Sciences, Poznan, Poland, 192 Psychiatric and
268 Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine,
269 Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, 193King's College
270 London, London, UK, 194 Oxford NHS Foundation Trust, Oxford, UK, 195 Department of Psychiatry,
271 Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt - Goethe University,
272 Frankfurt am Main, Germany, <sup>196</sup>Department of Psychiatry and Behavioral Sciences, Emory
273 University, Atlanta, GA, USA, <sup>197</sup>Division of Depression and Anxiety, McLean Hospital, Belmont, MA,
274 US, <sup>198</sup>Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical
275 Faculty Mannheim, Heidelberg University, Mannheim, Germany, 199 Department of Biochemistry and
276 Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain, <sup>200</sup>Department of
277 Research and Outcomes, Skyland Trail, Atlanta, GA, USA, <sup>201</sup>Department of Psychiatry and Behavioral
278 Neuroscience, University of Chicago, 202 German Center for Mental Health (DZPG), Munich, Germany,
279 <sup>203</sup>Department of Psychiatry, University Hospital, Faculty of Medicine, University of Bonn, Bonn,
280 Germany, <sup>204</sup>Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU
281 Munich, Munich, Germany, <sup>205</sup>Department of Psychiatry and Psychotherapy, LMU University
282 Hospital, LMU Munich, Munich, Germany, <sup>206</sup>Department of Biostatistics and Center for Statistical
283 Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA, 207 SAMRC Unit on the
284 Genomics of Brain Disorders, Faculty of Medicine and Health Sciences, Department of Psychiatry,
285 Stellenbosch University, Cape Town, Western Cape, ZA, <sup>208</sup>SAMRC Extramural Genomics of Brain
    Disorders Research Unit, Stellenbosch University, Cape Town, Western Cape, ZA, <sup>209</sup>Division of
    Cancer Epidemiology and Genetics National Cancer Institute, Rockville, MD, USA, <sup>210</sup>Icahn School of
    Medicine at Mount Sinai, New York, NY, USA, 211 Net.bio Inc, Los Angeles, CA, USA, 212 Psychiatric and
289 Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital,
    Boston, MA, USA, <sup>213</sup>Center for Precision Psychiatry, Department of Psychiatry, Massachusetts
    General Hospital, Boston, MA, USA, <sup>214</sup>Department of Child and Adolescent Psychiatry, Institute of
292 Psychiatry, Psychology and Neuroscience, King's College London, London, UK, <sup>215</sup>Department of
293 Mental Health, University of Aberdeen, Royal Cornhill Hospital, Aberdeen, UK., <sup>216</sup>Division of Mental
294 Health and Substance abuse, Diakonhjemmet Hospital, Oslo, Norway, 217 SAMRC Unit on Risk and
295 Resilience in Mental Disorders, Dept of Psychiatry and Neuroscience Institute, University of Cape
296 Town, Cape Town, South Africa, 218 School of Public Health, University of California San Diego, La
297 Jolla, CA, USA, 219 Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA,
298 USA, <sup>220</sup>German Center for Mental Health (DZPG), Partner Site Mannheim - Heidelberg - Ulm,
299 Germany, <sup>221</sup>Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental
300 Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, 222 INSERM Unit
301 894, Institute of Psychiatry And Neuroscience of Paris, Paris, France, <sup>223</sup>Cochin University Hospital,
302 Paris Cité University, Paris, France, 224 Institute for Health Informatics, University College London,
303 London, UK, <sup>225</sup>SBI MD Central Clinical Psychiatric Hospital F. Usoltseva, <sup>226</sup>FSBEI HE "Russian
304 University of Medicine" of the Ministry of Health of Russia, Russia, 227 School of Biomedical Sciences,
305 Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia,
306 <sup>228</sup>Neuroscience Research Australia, Sydney, New South Wales, Australia, <sup>229</sup>School of Public Health
307 and Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans,
308 LA, US, <sup>230</sup>Cheshire and Wirral Partnership NHS Foundation Trust, Winsford, Cheshire, UK,
```

```
309 <sup>231</sup>Genomics Program, University of South Florida College of Public Health, Tampa, FL, USA,
310 <sup>232</sup>Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA, <sup>233</sup>Institute
311 for Community Medicine, University Medicine Greifswald, Greifswald, Germany, <sup>234</sup>New York State
312 Psychiatric Institute, New York, NY, USA, <sup>235</sup>Department of Psychiatry, Columbia University Vagelos
313 College of Physicians and Surgeons, New York, NY, USA, <sup>236</sup>Institute of Biological Psychiatry, Mental
314 Health Services, Copenhagen University Hospital, Copenhagen, Denmark, <sup>237</sup>Universidade Nova de
315 Lisboa, Nova Medical School, Lisboa, Portugal, <sup>238</sup>Stanley Division of Developmental Neurovirology,
316 Johns Hopkins School of Medicine, Baltimore, MD, USA, <sup>239</sup>University of the Sunshine Coast, The
317 Chancellory, Sippy Downs, Queensland, Australia, 240 Queensland University of Technology, School of
318 Clinical Sciences, Kelvin Grove, Queensland, Australia, 241 Analytic and Translational Genetics Unit,
319 Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA,
320 USA, <sup>242</sup>Stanley Center for Psychiatric Research, Broad Institute of MIT, and Harvard, Cambridge, MA,
321 USA, <sup>243</sup>Department of Biomedicine, University of Bergen, Bergen, Norway, <sup>244</sup>Department of
322 Psychology, University of Washington, Seattle, WA, USA, <sup>245</sup>Department of Psychiatry, Virginia
323 Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,
324 USA, <sup>246</sup>Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK, <sup>247</sup>Institute
325 for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia,
326 <sup>248</sup>Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA,
327 <sup>249</sup>Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA,
328 <sup>250</sup>Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA,
329 <sup>251</sup>Research/Psychiatry, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA, <sup>252</sup>Centre
330 Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada, <sup>253</sup>Department of
331 Pediatrics, Université de Montréal, Montreal, QC, Canada, <sup>254</sup>Department of Molecular Genetics,
332 University of Toronto, Toronto, ON, Canada, <sup>255</sup>McLaughlin Centre, University of Toronto, Toronto,
333 ON, Canada, <sup>256</sup>Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla,
334 CA, USA, <sup>257</sup>Department of Cellular and Molecular Medicine, University of California San Diego, La
335 Jolla, CA, USA
```

336 *Correspondence at jsebat@ucsd.edu

337 Abstract

Rare copy number variants (CNVs) are a key component of the genetic basis of psychiatric conditions, but have not been well characterized for most. We conducted a genome-wide CNV analysis across six diagnostic categories (N = 574,965): autism (ASD), ADHD, bipolar disorder (BD), major depressive disorder (MDD), PTSD, and schizophrenia (SCZ). We identified 35 genome-wide significant associations at 18 loci, including novel associations in SCZ (SMYD3, USP7-HAPSTR1) and in the combined cross-disorder analysis (ASTN2). Rare CNVs accounted for 1–3% of heritability across diagnoses. In ASD, associations were uniformly positive, consistent with autism having diverse etiologies and clinical presentations. By contrast, CNVs showed a dose-dependent relationship for other diagnoses, including SCZ and PTSD, with reciprocal deletions and duplications having inversely correlated effects and distinct genotype-phenotype relationships. Our findings suggest that genes have effects that are both dose-dependent and pleiotropic, such that a positive influence on one dimension of psychopathology may be accompanied by positive or negative effects on others.

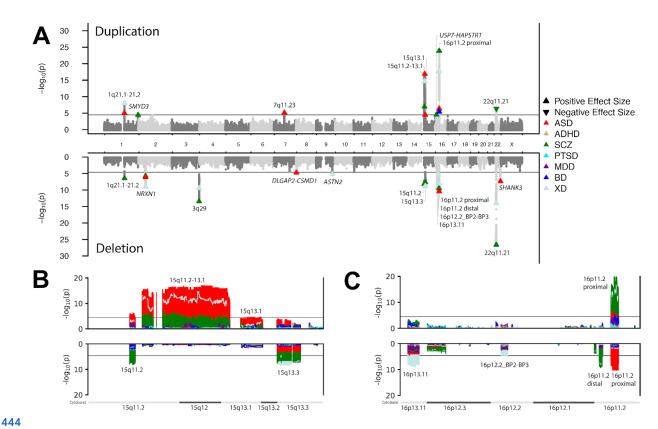
352 Introduction

The genetic architecture of neuropsychiatric traits is highly polygenic and consists of a wide range of allelic effects, from common variants of small effect ^{1,2} to rare variants of large seffect ³⁻⁵. In particular, rare copy number variants (CNVs) have provided key insights into the etiology of psychiatric conditions ³. Aggregate measures of rare CNV burden provided the earliest evidence for the contribution of rare variants to autism spectrum disorder (ASD) ⁶ and schizophrenia (SCZ) ^{7,8}, and studies of rare variants are beginning to make progress in major depressive disorder (MDD) ⁹ and post-traumatic stress disorder (PTSD) in addition, genome-wide association studies of rare CNVs have been vital for the discovery of genes and molecular pathways underlying psychiatric conditions. Analysis of CNVs within genes has implicated pathways involved in chromatin regulation ¹¹ and synaptic function ^{12,13}. Studies in larger samples have found strong associations of specific rare CNVs with ASD ^{14,15} and SCZ ¹⁶⁻¹⁹. Subsequent whole exome sequencing studies of ASD ¹⁶⁻¹⁸ and SCZ ⁵ have identified a wider array of rare gene mutations that further implicate pathways in synaptic function and genetic regulation of fetal brain development.

368 Despite these discoveries, the relationship of genes to the broad spectrum of psychiatric 369 traits is not well defined. No rare variant has yet been found that is specific to a psychiatric 370 diagnosis. Each rare CNV is associated with a variety of mental health and 371 neurodevelopmental conditions 20 and cognitive 21,22, physical 23,24 and general medical 25 372 conditions in the general population. These findings are consistent with significant genetic 373 overlap between diagnostic categories, and are consistent with rare variants being 374 pleiotropic, i.e. each having variable expressivity for multiple psychiatric traits 26,27.

Large scale collaborative studies of CNV have the potential to identify novel gene associations and new targets for development of therapeutics. Furthermore, a cross-disorder approach, in which a comparative analysis is done for several psychiatric conditions in parallel, could give a more granular dissection of genotype-phenotype relationships in genes and pathways. Genome-wide association studies (GWAS) are being applied on a large scale to characterize common variant influence and shared genetic risk factors across multiple psychiatric conditions in the Psychiatric Genomics Consortium (PGC). Here we apply the large-scale collaborative approach of the PGC to the discovery and characterization of rare variants that influence mental health by genome-wide analysis of CNVs in 574,965 individuals across six diagnostic categories.

387 Results


386

388

389 Rare CNV GWAS identifies 35 genome-wide significant associations at 18 loci.

We aggregated microarray intensity files from GWAS datasets to obtain rare CNV calls in 574,965 individuals (**Table S1**) including population controls (N = 441,958) and cases of SCZ (N = 36,865), ASD (N = 13,545), BD (N = 23,119), MDD (N = 38,917), PTSD (N = 393 17,839), and ADHD (N = 3,544). Individuals spanned multiple ancestries including 513,287 subjects classified as european (EUR), 27,964 asian (ASN/ASAM), 17,606 african (AFR/AFAM) samples, 5,812 Latin-X (LAT), and 10,296 subjects of mixed ancestry (**Table 396 S2**). CNVs were called using a centralized pipeline for systematic CNV calling across genotyping platforms and cohorts. QC of the dataset was performed at the levels of samples

```
398 (Fig. S1), CNV calls, and probes, as described in the methods. Probe normalization methods
399 and CNV calling accuracy are optimal for rare variants and a majority of common CNVs are
400 captured by SNPs <sup>29</sup>; thus, the call set was restricted to CNVs with frequencies <2%.
401
402 To identify rare genomic loci that contribute to psychiatric conditions, a CNV GWAS was
403 performed in each group: ASD, ADHD, SCZ, PTSD, MDD, BD as well as in the combined cases,
404 referred to as the cross-disorder group (XD). Statistical association tests were performed
405 for CNV counts in cases and controls at each probe with a CNV across the genome by
406 logistic regression, controlling for cohort, sex and ancestry principal components (PCA in
407 Fig. S2). Summary statistics were generated separately for each genotyping platform.
408 Meta-analysis of probe-level summary statistics on CNV associations was performed with
409 METAL <sup>30</sup>. Parameters for meta-analysis were optimized to control for statistical
410 confounders of CNV GWAS, including heterogeneity of genotyping platforms and sparse
411 data on rare variants (Fig. S3). Genome-wide multiple test correction was estimated by
412 permutation in the SCZ cohort to determine the appropriate threshold (Jaccard index) for
413 collapsing correlated adjacent probes to estimate the genome wide correction for each
414 diagnostic category (Fig. S4). CNV GWAS was carried out for deletions (DEL) and
415 duplications (DUP) separately in each diagnosis and in the combined XD cohort.
416 Association analyses identified 35 genome-wide significant associations for 18
   independent CNV loci (Fig. 1a, Table S3).
418
419 These results demonstrate a broad set of CNV associations that meet genome-wide
420 significance for ASD, SCZ, BD or XD samples. These include many DELs or DUPs that are
421 routinely reported in clinical genetic testing <sup>31,32</sup>, including CNVs at 1q21.1<sup>33</sup>, 3q29<sup>34</sup>,
422 16p11.2 35, 22q11.2 36 and several others (Table S3). In addition, we find novel associations
423 with CNVs not established previously as causal variants for psychiatric traits. Gene
424 duplications of SMYD3 were associated with SCZ in this study and have not been described
425 elsewhere in the clinical genetics literature. DELs of ASTN2 reached genome-wide
426 significance in the XD cases, consistent with ASTN2 loss of function having a broad
427 association with multiple psychiatric conditions <sup>37,38</sup>. Duplications of the genes USP7 and
428 HAPSTR1 showed a novel association with SCZ in this study.
429
430 CNV alleles at five loci showed genome-wide significant associations with more than one
431 diagnosis (1g21.1, NRXN1, 15g11.2 BP1-BP2, 15g11.2-13.1, 16p11.2 proximal, Table S3)
432 and three reached genome-wide significance only in the XD cohort (ASTN2, 16p13.11,
433 16p12.2 BP2-BP3). These results are consistent with the well-documented pleiotropy of
434 psychiatric risk alleles <sup>3,20</sup> and the corresponding overlap in the genetic basis of different
435 psychiatric conditions. <sup>1,20,28</sup> For example, a large DUP of 15q11.2-13.1, one of the most
436 well documented rare variants associated with ASD 39, is also significantly associated with
437 SCZ (Fig. 1b. green), and smaller DELs of this region, 15q11,2 (BP1-BP2/CYFIP1) DEL<sup>19</sup>
438 and 15q13.3 DEL<sup>8,19</sup>, were also associated with SCZ (Fig. 1b). 16p13.11 DEL and 16p12.2
439 DEL were associated with XD (Fig. 1c, grav) while reciprocal DELs and DUPs of 16p11.2
440 proximal show contrasting associations, the DEL being most significantly associated with
441 ASD <sup>14</sup> and the DUP most significantly associated with SCZ <sup>16</sup> as well as BD and ASD (Fig.
442 1c).
443
```


445 Figure 1: Detection of 35 genome-wide significant associations at 18 loci. A) CNV GWAS was performed at the
446 breakpoint level. CNV GWAS Manhattan plots for all individual disorders were superimposed on top of each other to produce
447 a porcupine plot of all associations in 6 diagnostic categories and in XD. The black line shows the approximate genome-wide
448 significance threshold (DUP: 3.2x10⁻⁵, DEL: 2.5x10⁻⁵) since the threshold varies by diagnosis. The genome-wide significance
449 thresholds for the 7 groups are ASD (DUP: 4.9x10⁻⁵, DEL: 3.5x10⁻⁵), ADHD (DUP: 4.9x10⁻⁵, DEL: 3.4x10⁻⁵), SCZ (DUP: 4.1x10⁻⁵,
450 DEL: 3.0x10⁻⁵), PTSD (DUP: 4.7x10⁻⁵, DEL: 3.4x10⁻⁵), MDD (DUP: 4.4x10⁻⁵, DEL: 3.1x10⁻⁵), BD (DUP: 4.3x10⁻⁵, DEL: 3.1x10⁻⁵),
451 and XD (DUP: 3.2x10⁻⁵, DEL: 2.5x10⁻⁵). The directionality of effect for each genome-wide significant hit is indicated by upward
452 (positive) and downward (negative) facing triangles. B) Zooming into the cluster of associations on chr15 shows how
453 psychiatric associations differ substantially between CNVs. SCZ is strongly associated with DELs in 15q11.2 and 15q13.3. In
454 contrast, a DUP spanning 15q11.2-13.1 has its strongest association with ASD and to a lesser extent SCZ. C) Zooming into the
455 cluster of associations on chr16 shows how CNV type can result in different psychiatric outcomes within a locus. A DUP at
456 16p11.2 proximal is strongly associated with SCZ while a DEL in the same location is strongly associated with ASD Table S3.

458 Rare CNVs explain 1-3% of the heritability in all diagnostic categories.

465

We and others have shown that the genome-wide burden of CNVs is a significant contributor to ASD and SCZ $^{6-8,13}$. Conversely, reports of weak associations of CNV burden with BD 40,41 , MDD 42 , and PTSD 10 imply that rare variants could have a comparatively small contribution to the genetic basis of other psychiatric conditions with adult onset. The combined frequency of CNVs at 18 genome-wide significant loci are present in 1.6-3.1% of the cases (Fig. 2A, Table S4) and 1.4% of controls.

466 Estimates of the total CNV burden genome-wide suggest significant disparities between
467 diagnostic categories in the contributions of rare variants. The burden of risk alleles
468 (genome-wide significant) was increased in ASD and to a lesser extent in SCZ, BD and MDD;
469 however the collective frequency of risk alleles in ADHD and PTSD was not significantly
470 greater than in controls (**Fig. 2A**). The total variance explained by CNV burden (length)
471 was estimated by meta-analysis of Nagelkerke's R² estimates from logistic regression. As

```
472 expected, variance explained by genome wide burden was greatest for ASD (R<sup>2</sup>=0.86%) and
473 SCZ (R^2=0.28%) and weaker for BD (R^2=0.11%), ADHD (R^2=0.07%), MDD (R^2=0.03%),
474 PTSD (R<sup>2</sup>=2.78x10<sup>-5</sup>)(Fig. 2B, Table S5). When we dissected CNV burden by functional
475 categories of length (bp), large CNVs (>1 Mb), and loss of function intolerance (pLI>0.5).
476 CNV burden for all diagnoses was increased in one or more functional categories (Fig. S5,
477 Table S6). We found modest evidence for a reduced CNV burden in loss-of-function
478 intolerant genes in PTSD relative to controls (Table S6). This weak effect could imply that
479 some rare variants reduce the probability of a PTSD diagnosis or it might be consistent with
480 case ascertainment of some PTSD cohorts selecting against traits attributable to deleterious
481 variants in genes (such as intellectual disability).
482
483 There was less disparity between diagnostic categories in the contribution of rare variants,
484 when we quantified variance explained by CNV genotype rather than their collective
485 burden. Estimation of Nagelkerke's R<sup>2</sup> from logistic regression finds that CNVs at
486 genome-wide significant loci explain 0.2-1% of the variance across all 6 diagnostic
487 categories (Fig. 2B, Table S5). An additional 0.2-0.3% was explained by other
488 clinically-reportable CNVs <sup>21,43</sup> (Table S7) that were not genome-wide significant in our
489 study (Fig. 2B, Table S5). In total, the variance explained by CNV genotypes and
490 genome-wide burden combined was non-trivial in all disorders and ranged from 0.6% to
491 2% (Fig. 2B, Table S5). Transformation of the Nagelkerke's R<sup>2</sup> to a liability scale gives
492 heritability estimates of 0.9% to 3% (Table S8).
494 When the six diagnoses were ranked based on the variance explained by rare CNVs (ASD >
495 \text{ SCZ} > \text{ADHD} > \text{BD} > \text{MDD} > \text{PTSD}), the R<sup>2</sup> estimates in this study were correlated with
496 corresponding estimates of heritability from twin studies (Spearman's rank correlation P =
497 0.0028, Table S8). However, when R<sup>2</sup> was converted to a liability scale, the correlation with
498 twin heritability was not significant (p = 0.48) and neither estimate was strongly correlated
499 with current estimates of SNP-based heritability (Table S8). Given that heritability
500 estimates rely on estimates of diagnosis prevalence that have been changing over time 44,45,
501 we regard our estimates of Nagelkerke's R<sup>2</sup> to be a more accurate representation of the
502 relative contributions of rare variants across the six diagnostic categories.
503
```

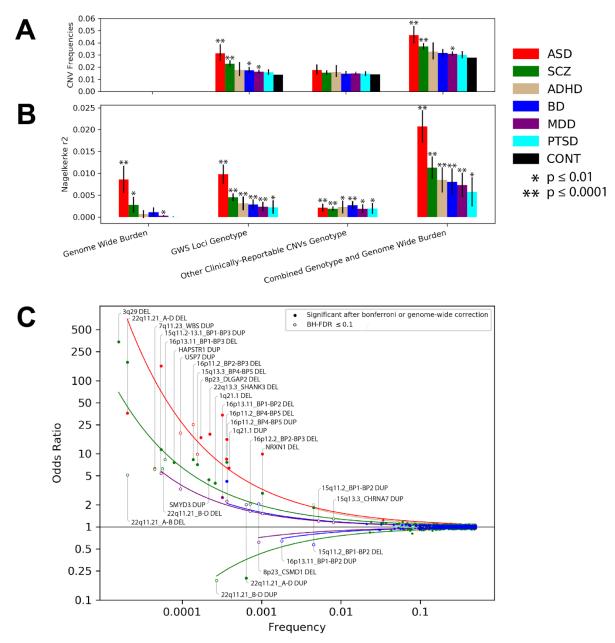


Figure 2: Rare CNVs span a broad range of frequencies and effect sizes, and explain 0.6-2% of the variance in all diagnostic categories. (A) Frequencies of CNVs in 6 diagnostic categories, Table S4. (B) Variance explained by rare CNV genotype (R^2) in each diagnosis was estimated for the combined loci by logistic regression. Loci were stratified for each diagnosis into genome-wide significant loci, and "other" known pathogenic microdeletion and duplications that are routinely reported in clinical genetic testing but do not reach genome-wide significance in this study. Diagnoses are ordered according to their ranking in the "Combined Genotype and Genome Wide Burden". Total variance explained by rare CNV was as follows:

11 PTSD (R2=0.58%), MDD (R2=0.74%), BD (R2=0.81%), ADHD (R2=0.85%)m SCZ (R2=1.11%), and ASD (R2=2.08%), results in Table S5. (C) Effect sizes of significant loci in the CNV-GWAS are shown as a function of frequency. There was an average of 5.0.7 independent tests in each diagnostic category. Effect sizes are given for all CNVs that show at least one association that meets BH-FDR \leq 10% correction (open circles) In addition, all associations that meet Bonferroni correction for 50 tests ($P\leq0.001$) or meet genome-wide significance are shown (see Methods) (solid circles). Effect sizes for significant SNPs from 516 previous SNP-GWAS were included to model variation effects across the full frequency spectrum. Results for DEL and DUP 517 effect sizes at 18 loci are in Supplementary Table S9.

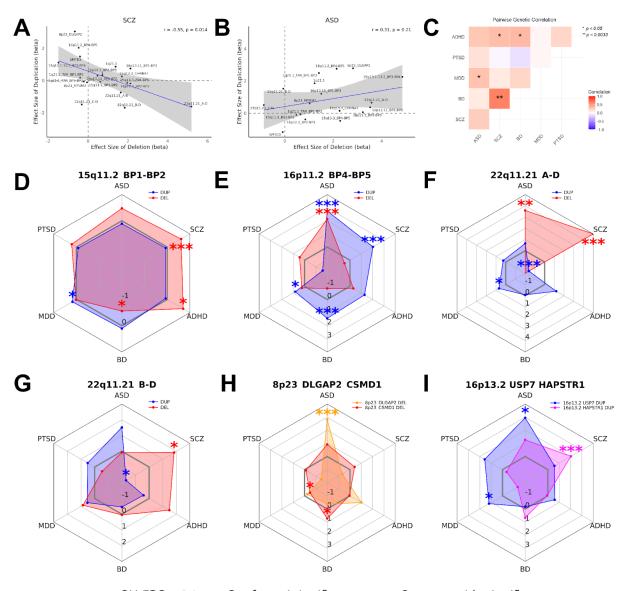
520 Characterizing pleiotropic effects of CNVs across 6 diagnoses

To gain a more complete view of the spectrum of diagnoses associated with each CNV, we estimated the effect sizes for specific CNV alleles within 18 genome-wide significant loci across 6 diagnostic categories. Within each association peak, distinct CNV alleles with recurrent breakpoints were delineated (see Table S9). At association peaks where breakpoints were not recurrent (i.e. were randomly distributed), individual genes were tested (SMYD3 at 1q44, ASTN2 at 9q33, USP7 and HAPSTR1 at 16p13.2, and DLGAP2, MYOM2 and CSMD1 at 8p23). We included all tests for which there were at least 12 CNVs in the combined sample. In total, 50 alleles or genes were tested across 6 diagnoses, and 67 associations were found at a false discovery rate (BH-FDR) \leq 10%. (Table S9). Figure 2C displays a trumpet plot of effect size vs frequency, combining rare CNV with common SNP associations from the summary statistics of the PGC GWASs of ASD 46, SCZ 47, BD 48, MDD 49, TSD 50, and ADHD 51. Curves for each group were fitted to an exponential model to provide a unified representation of rare and common variants. (Fig. 2C).

Nearly all loci identified in this study show evidence of association with multiple diagnoses, consistent with genes having pleiotropic effects on psychiatric traits ²⁰. ASD is notable for having many rare variants with large effects, all of which are in the positive direction (associated with cases). By contrast, the genetic architecture of other diagnoses consists of a mixture of positive (higher rate in cases) and negative associations (higher rate in controls). The negative associations that were observed, however, do not represent (protection) from all mental health conditions. Without exception, all CNV alleles that had a negative association with one diagnosis also had a positive association with another in this study (15q11.2 BP1-BP2 DEL, 22q11.2 A-D Dup, CSMD1 DEL) or in previous studies (16p13.11 BP1-BP2 DUP⁵², 22q11.2 B-D DUP⁵³), consistent with the same gene(s) having divergent effects in different disorders.

547 Genes have dose-dependent effects on psychiatric traits

546


559

DELs and DUPs of the 22q11.21 A–D region show opposing associations with schizophrenia (SCZ), with DELs increasing susceptibility and DUPs decreasing it ⁵⁴, and both associations reached genome-wide significance in this study. In addition, across all CNVs, the effect sizes of reciprocal DELs and DUPs for SCZ were inversely correlated (**Fig. 3A**), consistent with a linear dose-response relationship. A similar inverse correlation was observed for PTSD (**Fig. S6**). Despite having numerous strong associations, this inverse relationship was not evident for ASD where the DEL-DUP correlation was weakly positive (**Fig. 3B**). The contrasting dose-response curves for SCZ and ASD highlight key differences between these diagnostic categories. With respect to the opposing effects of DEL and DUP, the diagnostic category of SCZ is generally associated with one or the other, whereas the diagnostic category of ASD is often associated with both.

Analysis of the pairwise genetic correlations of diagnostic categories based on CNV effect sizes (**Table S9**) shows a significant genetic correlation of SCZ and BD (**Fig. 3C, Table S10**, 562 p=3.32x10⁻⁶). Weak correlations were also observed between these disorders and ADHD 563 (BD p-value=0.01, SCZ p-value=0.02) and between MDD and ASD (p=0.03). The genetic correlations that we observe for CNVs are consistent with genetic correlations observed in 565 GWAS ^{1,28}. The notable absence of correlation for SCZ and PTSD highlights how the

dose-dependent relationships of genes is evident for both disorders (**Fig. S6**) despite having different associations with specific loci.

While nearly all CNVs were associated with multiple diagnoses, this was not a reflection of rare variant effects being highly non-specific. To the contrary, different alleles exhibited different spectra of associations. Some loci show contrasting phenotype associations for reciprocal DEL and DUP of the same genes including 15q11.2 BP1-BP2 (Fig. 3D), 16p11.2 BP4-BP5 ("proximal 16p", Fig. 3E), 22q11.2 A-D (Fig. 3F) and 22q11.2 B-D (Fig. 3G). Results are consistent with these CNVs having dose-dependent effects on psychiatric traits, and within the 22q11.21 CNV, the dose-dependent effect may be driven by genes within the B-D locus.

* BH-FDR ≤ 0.1 ** Bonferroni significant *** Genome-wide significant

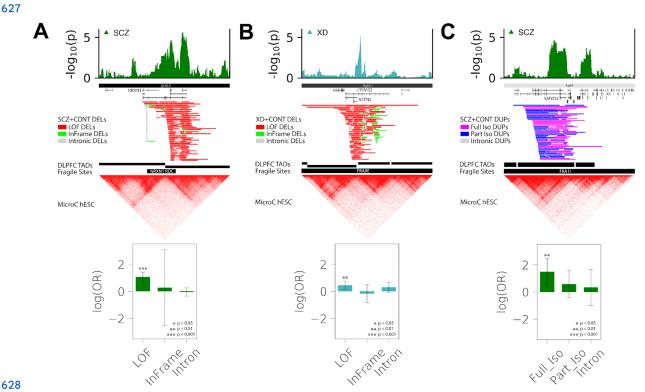
579 **Figure 3**: Dose response curves show inverse correlation of effect sizes for deletion and duplication in (A) SCZ, but not (B) 580 ASD. (C) Pairwise genetic correlations of six disorders based on CNV associations, see **Table S10**. (D-G) Effect sizes of deletion

581 and duplication are displayed for each diagnosis or (H-I) Effect sizes for 2 different genes across diagnoses under a single association peak. *BH-FDR<10%; **Bonferroni correction for 50 tests (p<0.001); ***Genome-wide significance. Radar plots for all loci are shown in **Figure. S7** and summary statistics of effect sizes are in **Table S9**.

At other loci where breakpoints were not recurrent, we compared the effect sizes for multiple genes within the same association peak. Within 8p23 for example, DELs of *DLGAP2* have a strong association with ASD, while DELs of nearby *CSMD1*, a gene that has been previously implicated in GWAS 2,55 show contrasting associations with mood disorders BD and MDD (**Fig. 3H**). Within 16p13.2, DUPs of *USP7* are associated with ASD and MDD, while the genome-wide significant association of DUPs with SCZ appears to be strongest for the adjacent *HAPSTR1* gene (**Fig. 3I**). Radar plots of effect sizes for DELs and DUPs across 6 diagnostic categories are shown for all loci tested (**Fig. S7, Table S9**).

Relationships of CNV genotype to phenotype that are observed here are attributable to the dose-dependent effects of genes on pathways and cellular processes As described in our companion paper ⁵⁶, the diagnostic categories of schizophrenia, autism and mood disorders can be differentiated based on the gene-dosage effects on pathways stratified by cell-type and brain region. In particular, 16p11.2 BP4-BP5 and 22q11.2 A-D are enriched for distinct cellular processes that are characteristic of the DUP and DEL effects respectively that contribute to SCZ. Thus the spectrum of clinical phenotypes observed for CNVs in Figure 3E-F is a reflection of how pathway effects are concentrated in neural cell types and cortical brain regions ⁵⁶.

604 Recurrent mutations in large neural genes highlight novel associations

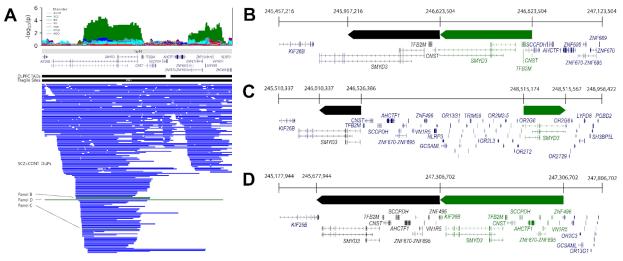

593

603

615

Without exception, all associations found in this study occurred in genomic regions that are properties for properties of structural mutation. Twelve loci consist of hot-spots for non-allelic homologous recombination (NAHR)⁵⁷ that have recurrent breakpoints, in most cases span multiple genes, and are given a cytoband-breakpoint label in **Figure 2** (e.g. 1q21.1) to reflect the CNV allele that was tested. The remaining six loci were common fragile sites (CFS) where double strand breaks occur with high frequency and are distributed more randomly. Section are labeled with gene symbols to reflect the genes that were tested (ASTN2, NRXN1, SMYD3, SHANK3, DLGAP2-CSMD1, USP7-HAPSTR1, **Table S3**). The fact that all associations occur within CNV hotspots is consistent with the statistical power for rare variants being greatest for the loci with the highest mutation rates.

616 All three single-gene associations consist of fragile sites within long genes that have
617 functions related to neuronal development ⁵⁸. Long genes are prone to replication stress,
618 and consequently, genome instability ⁶⁰, and tend to co-localize with TAD boundaries ⁶¹.
619 These include positive associations of *NRXN1* DELs in SCZ (**Fig 4A**), *ASTN2* DELs in XD (**Fig.**620 **4B**) and *SMYD3* DUPs in SCZ (**Fig 4C**). CNVs in these genes have a characteristic fragile-site
621 signature where the breakpoints, lengths and functional consequences of the CNVs are
622 variable. When we stratified CNVs by predicted functional consequence, the associations of
623 *NRXN1* and *ASTN2* DELs were greatest for loss-of-function (LoF) variants that are predicted
624 to result in truncation of the protein (**Table S11**). The association of *SMYD3* DUPs was
625 driven by variants that span at least one full length transcript of the gene, consistent with a
626 gain of function effect (**Table S11**).


629 Figure 4: CNV associations implicate large neural genes within common fragile sites. Three genome-wide significant 630 loci that overlap fragile sites and TAD boundaries from Dorsolateral Prefrontal Cortex (DLPFC TADs) are shown for A) NRXN1 631 B) ASTN2 and C) SMYD3. Association tests (bottom) were stratified by predicted functional consequence: loss of function 632 (LOF), In frame, and intronic (Intron). Duplications spanning a full length isoform (Full Iso) or partially spanning an isoform 633 (Part Iso), and intronic (Intron). Table S11.

635 Recurrent duplications of SMYD3 are associated with schizophrenia

634

636 The association of the gene SET and MYND domain containing 3 (SMYD3) with SCZ appears 637 to be driven by DUPs of full length transcripts, suggesting that the causal variants increase 638 the number of functional copies of SMYD3. However, gene duplications detected by 639 microarray can have hidden complexity that, in some cases, results in loss rather than gain 640 of function⁶². To clarify the structure and functional consequence of SMYD3 DUPs, DNA 641 samples from 3 carriers with DUPs spanning the short isoform of SMYD3 were obtained 642 from DNA samples available to our group through UCSD and collaborators at Trinity College 643 Dublin, and HiFi long-read whole genome sequencing was performed on each sample using 644 the Pacific Biosciences Revio platform to a total coverage of >20X (Fig. 5A, Table S12 for 645 coverage and QC). HiFi long reads were aligned to both the GRCH38 and CHM13 646 assemblies using PBMM2, and SVs were called using Sniffles and LUMPY. In each genome, 647 DUP breakpoints were identified and contigs were assembled from breakpoint-spanning 648 reads using Flye v2.9.2. Assembled breakpoints revealed that each SV had a distinct 649 structure. Subject 1 carried a tandem duplication of 666,289 bp spanning the short isoform 650 of SMYD3 (ENST00000403792.7, **Fig 5B**). Subject 2 carried a 516,050 bp non-tandem 651 duplication of ENST00000403792.7 that was inserted into the first intron of OR2G6 (Fig. 652 **5C**). Subject 3 carried a tandem duplication of 1.6 Mb spanning >10 genes including the full 653 length of the SMYD3 gene (Fig 5D). Thus, all DUPs appear to result in an increased copy 654 number of at least one full length isoform of SMYD3.

656 All breakpoint positions were non-recurrent (unique to each subject). In two cases, tandem duplications resulted in the partial duplication and recombination of genes near the breakpoint junction. However, the fused transcript pairs *CNST/SMYD3* (**Fig 5B**) and *KIF26B/ZNF496* (**Fig. 5D**) were on opposite strands. In patient 3, the *SMYD3* gene is inserted within *OR2G6* (**Fig 5C**) in the same orientation, and is predicted to fuse exons 1-5 of the long isoform of *SMYD3* with the full open reading frame of *OR2G6*. Thus, in addition to duplicating the short isoform of *SMYD3*, the SV has the potential to cause ectopic expression of an olfactory receptor from the *SMYD3* promoter.

666 Figure 5: Structures of SMYD3 duplications resolved by HiFi long read WGS

667 (A) The association peak spans exons 1-3 of the SMYD3 gene while the CNVs themselves have variable 668 breakpoints that duplicate different nearby genes. Pacbio sequencing was performed on 3 cases with the SMYD3 669 Dup and the corresponding microarray CNV calls are shown (green) on the SCZ DUPs track. (B) The first sample 670 is a tandem duplication that spans the full short isoform of SMYD3. The duplicated portion truncates the long 671 isoform of SMYD3 on the proximal side as well as the CNST gene on the distal side. The inserted sequence has 672 portions of both CNST and SMYD3 sitting flush with each other. (C) The next sample is an inserted DUP that 673 spans the full short isoform of SMYD3. It does not include any extra genes and is inserted next to the olfactory 674 receptor genes with a small deletion of 393bp. (D) The last sample is another tandem duplication that spans all 675 isoforms of SMYD3. It is a longer DUP that includes many genes on the distal side of SMYD3. This DUP cuts 676 KIF26B on the proximal side of SMYD3 and ZNF496 on the distal side and the resulting genome in the sample has 677 both genes sitting flush with each other. **Table S12**.

679 Discussion

655

665

678

686

In a comparative study of rare CNVs across six psychiatric diagnoses (ASD, ADHD, SCZ, BD, 681 MDD, and PTSD), rare variant associations elucidate key aspects of the genetic architecture. This study identified 35 genome-wide significant associations at 18 different CNV regions, 683 providing a map of loci where gain or loss of gene dosage influences psychiatric traits. This represents a 4-fold increase in the number of CNV associations to date that meet 685 genome-wide significance in the PGC ¹³.

687 Rare CNVs accounted for 0.6–2% of the variance in case status across 6 diagnostic 688 categories, corresponding to 0.9–3% of liability-scale heritability. This contribution is 689 independent of the heritability explained by common variants. ASD is notable for having

```
690 many rare variants with large effects, all of which are in the positive direction. For other
691 diagnostic categories, such as SCZ, BD and MDD (Fig. 2C), the contribution of rare variants
692 consisted of a mixture of risk alleles (more frequent in cases) and protective alleles (more
693 frequent in controls). Hence, the genome-wide burden of rare variants in a categorical
694 diagnosis is not a particularly accurate measure of their influence. The collective frequency
695 of rare CNVs in some disorders, such as ADHD and PTSD, is similar to the frequency in
696 controls but CNVs still account for approximately 1% of heritability.
697
698 Importantly, the negative associations that we observe do not represent broad "protection"
699 from mental health conditions. Without exception, all CNV alleles that had an effect size
700 that was negative for one diagnosis have a positive association with another in this study
701 (15q11.2 BP1-BP2 DEL, 22q11.2 A-D DUP, CSMD1 DEL) or in previous studies
702 (16p13.11BP1-BP2 DUP<sup>52</sup>, 22q11.2 B-D DUP<sup>53</sup>), highlighting how the same CNV allele can
703 have divergent, sometimes opposing, associations with different psychiatric traits.
704
705 Furthermore, different CNV alleles have different spectra of associations across 6
706 diagnoses. These contrasts are particularly evident for reciprocal DEL and DUP of the same
707 genes (Fig. 3). Previous studies have shown that CNVs have "mirror" dose-dependent
708 effects on a variety of complex traits <sup>23,24</sup>, including brain structure <sup>63</sup> and cognition <sup>64,65</sup>.
709 Here we show that this principle also applies to psychosis and other psychiatric traits.
710 Reciprocal DELs and DUPs of 22q11.21 show opposing positive and negative associations
711 with schizophrenia (SCZ) respectively <sup>54</sup>. Furthermore, across all loci, there was an inverse
712 correlation of effect sizes for reciprocal CNVs in SCZ and PTSD, suggesting that CNVs have a
713 dose-dependent relationship with some diagnoses. ASD, by contrast, was characterized by a
714 neutral (weakly positive) dose-response curve. Thus, with respect to the opposing effects of
715 DEL and DUP, SCZ is generally associated with only one of the two extremes, but both often
716 fall under the diagnostic umbrella of ASD. MDD showed a similarly neutral dose-response
717 curve (Fig. S6), and ASD and MDD exhibited significant genetic correlation (Fig. 3C). These
718 findings underscore how mental health traits related to social behavior and mood are
719 characterized by substantial clinical and genetic heterogeneity <sup>66</sup>. Deeper clinical
720 characterization of dimensional cognitive phenotypes associated with reciprocal CNVs
721 could better elucidate relationships of gene dosage with quantitative traits and could help
722 to dissect the clinical and genetic heterogeneity within these diagnostic categories <sup>67</sup>.
723
724 Multiple novel loci were identified in SCZ (SMYD3, USP7-HAPSTR1) and in the combined XD
725 sample (ASTN2). SET and MYND domain-containing protein 3 (SMYD3) is a histone
726 methyltransferase expressed predominantly in the brain <sup>68</sup> with a function in chromatin
727 regulation <sup>69</sup>. While it's role in regulation of neural function is not known, a recent study has
728 shown that SMYD3 expression is elevated in the prefrontal cortex of patients with
729 Alzheimer's disease, and a SMYD3 inhibitor rescues synaptic and cognitive deficits in a
730 mouse model of tauopathies 70. A variety of inhibitors of SMYD3 have been developed in
731 oncology <sup>71</sup>. Thus, validation of increased SMYD3 dosage as a risk factor for psychosis could
732 offer a potential avenue for development of new therapeutics. DUPs that span USP7 and
733 HAPSTR1 were associated with SCZ in this study. More detailed characterization found
734 evidence that the USP7 gene was associated with ASD and MDD, consistent with recurrent
735 de novo DUPs of this region previously reported in ASD 72. Ubiquitin-specific protease 7
```

736 (USP7) is a deubiquitinating enzyme that is highly expressed in neuronal cells in cerebrum, 737 cerebellum, and hippocampus⁷³. *USP7* influences neuronal development and function 738 through neuronal migration 74, dendritic spine morphogenesis 75 and neuroinflammation. 76 739 The SCZ association with this locus was strongest for the adjacent gene HAPSTR1 (**Table** 740 **S9**), which encodes a regulator of stress response pathways ⁷⁷, which have been implicated 741 in the etiology of SCZ 78, DELs of ASTN2 were significant in the combined XD cases 742 suggesting these confer risk for a broad range of psychiatric disorders. This finding is 743 consistent with previous reports of ASTN2 DELs in small samples of SCZ, BD and ASD ^{37,79}. 744 ASTN2 is predominantly expressed in the brain and plays a role in neuronal migration 80 745 and synaptic function 81. Common SNPs within CSMD182 and NRXN12 are associated with 746 SCZ, and ASTN2 has been implicated in GWAS of MDD⁸³ and BD⁸⁴. Thus, a convergence of 747 evidence from both rare and common variants implicate the same genes. Synaptic 748 neurotransmission, regulation of synaptic plasticity, chromatin and post-transcriptional 749 regulation are common threads between studies of CNVs, whole exome sequencing 5 and 750 GWAS 85. A more detailed characterization of the molecular pathways, cell types and brain 751 regions that are implicated by CNV associations is described in our companion paper ⁵⁶. 752 753 A majority of the CNVs that reached genome-wide significance in this study are variants 754 that are routinely reported in clinical microarray (CMA) testing, and clinically-reportable 755 CNVs that did not reach genome-wide significance in this study explained another 0.2-0.3% 756 of the variance across all six diagnoses (see **Table S5**). Yet very few of the subjects enrolled 757 in this study have been offered genetic testing as part of their clinical care. CMA has 758 historically been restricted to pediatric populations for the evaluation of congenital 759 malformations⁸⁶, intellectual disability and autism⁸⁷, and insurance providers approve it 760 only for these indications. Consequently, the clinical features of CNVs that are described in 761 the literature reflect this bias, and may not be representative of clinical presentations of 762 CNV carriers in the broader adult population ^{25,88}. As large-scale studies like this one begin 763 to uncover associations between CNVs and adult-onset health conditions, the effectiveness 764 of early tailored interventions can be evaluated, clinical guidelines can be revised, and the 765 need for genetic counseling in subjects carrying these CNVs can be assessed. When 766 considering all clinically-reportable variants that influence mental health, the overall 767 difference in diagnostic yield between different clinical populations is relatively small (Fig. 768 **2A**). If the rationale for ordering a clinical genetic test is the utility of genetic information 769 for lifelong clinical management and genetic counseling of individuals, then the utility of 770 CMA is not limited to the pediatric developmental clinic. 771

772 Acknowledgements

773 We thank the many research participants. The PGC is supported by grants to UCSD 774 (R01MH124847), UNC (R01MH124871), MGH (R01MH124851), Mount Sinai School of 775 Medicine (R01MH124839), Cardiff University (R01MH124873), Trinity College Dublin 776 (R01MH124875) and Washington University St. Louis (R01DA054869). Additional support 777 was provided by grants to J.S. (MH119746, MH133899), C.N. (MH106595, MH124847) and 778 S.J. (U01 MH119690, U01 MH119739, CIHR_495906). Funding for the work in Bipolar 779 Disorder was supported by the Research Council of Norway (#223273, 248778, 262656, 273291, 283798, 248828), South East Norway Health Authority (2017-112), and KG Jebsen 781 Stiftelsen. The iPSYCH project is supported by grants from the Lundbeck Foundation

```
782 (R165-2013-15320, R102-A9118, R155-2014-1724 and R248-2017-2003) and the
783 universities and university hospitals of Aarhus and Copenhagen. Genotyping of iPSYCH
784 samples was supported by grants from the Lundbeck Foundation, the Stanley Foundation,
785 the Simons Foundation (SFARI 311789 to M.J.D.), and NIMH (5U01MH094432-02 to M.J.D.).
786 The Danish National Biobank resource was supported by the Novo Nordisk Foundation.
787 Data handling and analysis on the GenomeDK HPC facility was supported by NIMH
788 (1U01MH109514-01 to A.D.B.). High-performance computer capacity for handling and
789 statistical analysis of iPSYCH data on the GenomeDK HPC facility was provided by the
790 Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing,
791 iSEQ, Aarhus University, Denmark (grant to ADB).
792
793 Data and code Availability
794 A WDL workflow containing all steps of CNV calling, OC and CNV-GWAS and meta-analysis
795 code is under construction and will be released on the PGC CNV Github in conjunction with
796 this publication (https://github.com/orgs/psychiatric-genomics-consortium/teams/cnv).
797
798 Meta-analysis of summary statistics for 6 diagnoses and the combined XD sample will be
799 released through the PGC downloads page
800 https://pgc.unc.edu/for-researchers/download-results/
801
802 Raw genotype and intensity files are available on subset of the cohort
803 PGC dbGAP datasets
804 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/collection.cgi?study_id=phs001254.v
805 1.p1
806
807 Simons Foundation Autism Research Initiative SFARI (SSC and SPARK)
808 https://base.sfari.org/
810 Supplementary Materials and Methods
812 Methods
213
814 GWAS datasets of the PGC
815 The CNV subgroup of the Psychiatric Genomics Consortium (PGC) works in collaboration
816 with principal investigators from many institutions to obtain large sample sizes of
817 microarray data and analyze them using a centralized pipeline. We acquired microarray
818 intensity files from GWAS for a total of 574,965 samples that included data from 6
819 psychiatric conditions (Table S1). These samples were genotyped on 25 platforms across 4
820 genome builds. Data from Illumina was collected as either raw intensity data (IDAT) files or
```

final report files while data from Affymetrix was collected as CEL files. To harmonize data, probes for newly acquired datasets were lifted over to GRCH38 for CNV calling while previously called CNVs were lifted over to GRCH38. Samples were genotyped on either

826 Copy number variant calling

824 Illumina or Affymetrix array.

For samples that were provided as IDAT files, the Illumina command line version of Genome Studio was used in conjunction with platform-specific manifest and cluster files to produce genotype call (GTC) files. Relevant features were extracted from GTC files to obtain final report files with probes, genotypes, Log R Ratio (LRR), and B Allele Frequency (BAF) for each sample. For samples that were not mapped to GRCH38, probe genome positions were converted to hg38 using the LiftOver tool. Samples within each platform were grouped into batches by plate. For Affymetrix 6.0 arrays, CNVs were called using four methods: PennCNV, iPattern, CScore, and Birdsuite. For Affymetrix 5.0 and 500K arrays, CNVs were called using two methods that were compatible with this platform: PennCNV and Birdsuite. For Axiom arrays, CNVs were called using PennCNV and QuantiSNP. For all Illumina arrays, CNVs were called using two methods: PennCNV and iPattern. The consensus of CNV calls from multiple callers was created by merging CNVs at the sample level and retaining CNVs that were called by at least 2 methods.

841 Quality control of samples and CNVs

840

852

868

842 Sample QC. Quality control (QC) was performed first at the sample level according to 843 methods from our previous CNV GWAS of schizophrenia ¹³. For Illumina arrays, LRR 844 standard deviation, BAF standard deviation, and GC waviness factor were extracted from 845 PennCNV log files (**Fig. S1**). Samples were retained if each of the measures were within 3 846 SD of the median. Affymetrix arrays used MAPD and waviness-sd parameters from affy 847 power tools. The proportion of the chromosome that was tagged as a CNV was calculated 848 and samples were excluded if >10% of the chromosome was marked as a CNV region to 849 filter possible aneuploidies. Distribution of QC metrics differ by genotyping platform (**Fig. S1**), which provides a rationale for performing meta-analysis of summary statistics by 851 platform.

853 *CNV QC.* A basic set of QC filters were applied to the call set, and subsequent filtering was 854 performed at the probe level. CNVs that were called with different CNV types from different 855 callers were excluded. Large CNVs that were fragmented were merged if one of the calling 856 methods detected a CNV spanning the gap. CNVs < 10kb in length or contained < 10 probes 857 were excluded. CNV calls were removed if they spanned the centromere or telomere (100kb 858 from end of chromosome) or had >50% overlap with segmental duplications, 859 immunoglobulin, or T cell receptor. Because the normalization of microarray intensity data 860 is performed within a batch (typically a 96-well plate), CNV calling is optimal for rare CNVs 861 that show distinguishable deviation in probe intensities relative to other samples within a 862 plate. For common copy number polymorphisms (frequencies >10%), there is high variance 863 in probe intensities within plates as well as sampling variance in the distribution of copy 864 numbers. For this reason, CNV calling accuracy is suboptimal for common CNVs. 865 Furthermore, a majority of common CNVs are tagged by adjacent SNPs ²⁹ and are already 866 captured by GWAS. Thus our final call set was restricted to CNVs with ≤ 10% frequency 867 within-platform or across all platforms.

869 *Probe QC*. Our CNV-level QC applied a liberal threshold of 10% frequency to make certain 870 that pathogenic CNVs near the rare CNV frequency boundary were kept in our analysis. CNV 871 frequency was then calculated for each probe and probes with rare CNVs were kept if they 872 contained $\leq 2\%$ CNV frequency within-platform and within-dataset. Additionally, probes

873 were removed if they were heavily filtered by CNV QC (filtered CNVs > 20). 874 Platform-specific and dataset-specific CNVs arose from the differing probe content of the 875 many genotyping arrays. We applied probe-level specificity filters to prevent these CNVs 876 from causing spurious associations in our results as described in detail in the Methods.

878 Ancestry principal components and ancestry partitioning

877

904

912

879 We extracted a subset of SNPs with < 1% missingness across all platforms (12,185 SNPs) 880 and performed a principal component analysis using the flashPCA software 89. In order to 881 genetically infer the ancestry of each individual, we used the SNPweights software 90 on the 882 same subset of SNPs to calculate % ancestry based on a reference panel containing 6 883 different populations (751 EUR, 687 EAS, 630 SAS, 568 AFR, 41 AMR, 22 OCE). Samples 884 were categorized into 5 large homogeneous groupings based on the following criteria used 885 in a previous study 50 (**Table S2, Fig. S2**): EUR: subjects with EUR \geq 90%, AFR/AFAM: 886 subjects with EUR < 90% & AFR \geq 5% & EAS/SAS/AMR/OCE < 5%, ASN/ASAM: subjects 887 with EUR < 90% & (EAS \geq 5% or SAS \geq 5%) & AFR/AMR/OCE < 5%, LAT: subjects with EUR 888 < 90% & AMR \geq 5% & EAS/SAS/AFR/OCE < 5%, NAT: subjects with EUR < 90% & AMR \geq 889 60% & EAS < 20% & SAS < 15% & AFR/OCE < 5%, MIX: Uncategorized subjects. The LAT 890 and NAT groups were combined into a single group with the overall LAT label.

892 Statistics for CNV genome wide association

The association of deletions or duplications with case status was tested by logistic regression, controlling for confounding variables such as sex, genotyping platform, and 10 ancestry principal components (PCs) derived from SNP genotypes (Model 1). A logistic regression using only the covariates was used as a null model (Null Model 1). Datasets containing families used a conditional logistic regression with an extra covariate corresponding to the family ID (Model 2, Null Model 2). A chi-square test was then performed on the 2 models to obtain a p-value. A meta-analysis weighted by sample size (N-weighted) was applied across all platforms using METAL 30. Effective sample size (Neff) was used to determine the contribution of each platform. Associations were conducted at the breakpoint level since our sample size provided enough CNVs to obtain sufficient power. A breakpoint was included in the analysis if it contained at least 12 CNVs.

```
905 Model 1: aff \sim CNV + sex + PCs

906 Null Model 1: aff \sim sex + PCs

907

908 Model 2: aff \sim CNV + sex + PCs + strata(FID)

909 Null Model 2: aff \sim sex + PCs + strata(FID)

910

911 N_{eff} = \frac{4}{(1/N_{cases}) + (1/N_{controls})}
```

913 Addressing statistical confounders in large-scale genome-wide meta-analysis of rare 914 CNVs.

915 In our experience, the key statistical confounders that must be addressed when performing 916 a genome-wide meta-analysis of rare CNVs across many cohorts are (1) heterogeneity in 917 CNV detection due to SNP genotyping platform and (2) The sparse data (zero cell) problem

 918 91 , where some loci produce summary statistics with very high standard errors in a subset 919 of the cohort due to zero counts in cases or controls.

921 Heterogeneity of SNP genotyping platforms

920

928

940

Population stratification, a common confounder in genome-wide association studies ⁹² can be addressed in studies of rare variants by controlling for ancestry principal components derived from SNP genotypes ⁹³. In large-scale collaborative studies of rare variants, however, there is another major confounder that must be addressed: differences in variant frequency between cohorts that is attributable to differences in the technology platforms used for rare variant detection.

"Platform stratification" is a confound that is conceptually similar to population stratification but is tied to genotyping/sequencing platform instead of ancestry. In large-scale collaborative studies of CNVs, where datasets from multiple cohorts are combined, differences in CNV frequencies between datasets can arise due to differences in CNV detection by the genotyping platforms that are used with each cohort. For instance, due to regional differences in probe coverage, a given CNV may be detected with greater sensitivity by platform A than by platform B. When two datasets genotyped with platforms A and B are combined, a false-positive association with the CNV can occur, particularly when the relative proportions of cases and controls differ between datasets (Fig S3). Thus "platform stratification" can artificially produce differences in CNV frequency between cases and controls.

To identify signals that are potentially attributable to platform stratification, we derived a measure for the platform or dataset specificity of CNV counts for a given probe. CNV frequency is calculated within-platform and within-dataset (**Equation 1**). A weighted deviance score (WDS) is then calculated for each platform/dataset (**Equation 2**) and a specificity index (SI) is derived by taking the maximum of the WDS across platforms/datasets (**Equation 3**). When calculating the SI score, all counts were used to calculate E_i in Equation 2, but only platforms/datasets with >2 CNVs were included when calculating the maximum in Equation 3. This prevented inaccurate SI scores being driven by single counts in smaller sample sizes. A threshold value of SI>0.2 was chosen for platform stratification.

```
952 Equation 1: CNV Frequency _{i} = \frac{C_{i}}{N_{i}}

953 Equation 2: WDS_{i} = \frac{C_{i} - E_{i}}{\sqrt{E_{i}N_{i}}}

954 Equation 3: SI = max(WDS_{i})

955 E_{i} = pN_{i}; N_{i}: # of samples on platform i; p = \frac{C}{N}

956 C_{i}: # of CNV counts on platform i; E_{i}: Expected CNV counts on platform i

957 N: # of total samples; C: # of total CNV counts
```

When association tests are performed across the combined SCZ sample in a single logistic regression model, the associations that arise cluster into groups based on the SI measure. Most associations in SCZ, including all well established "known" associations, are enriched among probes that have low SI. A second small cluster of probes can be seen with high SI (Fig. S3A). In a manhattan plot, these appear as distinct association peaks that persist even when platform is included as a covariate in the logistic regression model (Fig. S3C). These spurious signals are addressed by a meta-analysis of CNV summary statistics by platform as described below.

968 Sparse data problem

967

976

984

992

A major confounder in genome-wide association studies of rare variants is attributable to sparse counts of rare variants within subsets of the combined sample, where there can be zero values in cases and controls distributed across the cohort ⁹¹. These zero values can lead to greatly inflated standard error estimates for specific loci in a subset of the summary statistics used in the meta-analysis. When meta-analysis was weighted by standard error, tests that yielded high standard error estimates (**Fig S3B**, SEM>1) contributed to many spurious associations throughout the genome (**Fig. S3D**).

977 Sample size-weighted meta-analysis of samples grouped by genotyping platform

978 Platform heterogeneity was adequately addressed when (1) samples were first grouped by 979 genotyping platform, and meta-analysis was performed across platforms and (2) 980 meta-analysis was weighted by the samples sizes of each platform instead of standard 981 error. Following this workflow, the combined association data does not show strong signals 982 that are driven by probes subject to platform heterogeneity or by probes that show high SE 983 estimates in the combined sample (**Fig. S3E**).

985 Estimation of multiple test correction

986 The p-value threshold that gives a family-wise error rate (FWER) of 0.05 was calculated as 987 an adjusted Bonferroni correction. The total number of tests was replaced with the total 988 number of independent tests (Equation 4). Independent tests were counted after removing 989 tests with >4% Jaccard index. The Jaccard index threshold was chosen by comparing 990 multiple test corrections based on permutations in the SCZ cohort on chr1 with Bonferroni 991 corrections at different Jaccard index thresholds (**Fig. S4**).

993 Equation 4: Genome wide significant threshold (p value) = $\frac{0.05}{\text{# of independent tests}}$

995 Investigating the Pleiotropic effects of CNVs across 6 diagnostic categories

996 To investigate the full range of psychiatric conditions associated with each locus, we performed a 997 more detailed characterization of the effect sizes of specific CNV alleles across the 6 diagnostic 998 categories. For each locus with recurrent (NAHR) breakpoints (1q21.1-21.2, 3q29, 7q11.23, 999 15q11.2, 15q11.2-13.1, 15q13.1, 15q13.3, 16p13.11, 16p12.2, 16p11.2, 22q11.21), we identified 1000 all of the distinct alleles within each locus and genotyped each individually. For loci with 1001 non-recurrent (randomly distributed) breakpoints (ASTN2, NRXN1, SMYD3, USP7-HAPSTR1, 1002 8p23, 22q13.3) we tested individual genes. Altogether, across the 18 regions listed above, 1003 there were 43 distinct loci, and DEL and DUP were tested for each (86 alleles, **Table S9**).

1004 Only tests with a count of at least 12 in the combined cases and controls were considered, 1005 thus \sim 50 tests are reported for each diagnostic category.

1007 Annotating which CNV loci are recurrent (NAHR) or non-recurrent, and annotating 1008 clinically reportable CNVs

1009 All of the associations reported in this study were "CNV hotspots", i.e. loci that are prone to 1010 genomic instability. A majority were "NAHR" loci where recurrent de novo CNVs occur by 1011 non-allelic homologous recombination (NAHR) and de novo mutation events produce deletions 1012 and duplications with similar breakpoints ^{57,94}. The remaining loci consisted of "fragile sites" 1013 where frequent double strand breaks give rise to many non-recurrent deletions and duplications 1014 that have breakpoints that are more randomly distributed across the locus. **Table S7** provides a 1015 guide to which CNV loci are NAHR or are non-recurrent. Where applicable, we also include 1016 links to clinical guidelines for CNVs that are recognized as pathogenic and reported in clinical 1017 genetic testing.

Table S7 was prepared as follows. An initial "morbidity map" of the genome was created by 1020 Cooper et al. ⁴³, identifying NAHR-mediated regions and characterizing their associations using 1021 large clinical microarray datasets from pediatric developmental disorder cases. This study has 1022 since become a standard reference list of known recurrent CNVs used by our group and others ²¹. 1023 We created an updated version of the morbidity map from the union of loci from Cooper et al. ⁴³, 1024 Kendall et al²¹, and this study. Breakpoints were refined to facilitate genotyping of distinct CNV 1025 alleles. A majority of the loci in the morbidity map are known CNVs that are routinely reported 1026 in clinical genetic testing. Where appropriate, we provide a URL link to clinical guidelines from 1027 Gene Reviews ⁹⁵, Clin Gen ⁹⁶, OMIM ⁹⁷ or other databases. In addition, we label the CNV alleles 1028 corresponding to "GWS loci" and "Other Clinically-Reportable CNVs" in **Figure 2A.** 1029

1031 Calling genotypes for each locus

1006

1018

1030

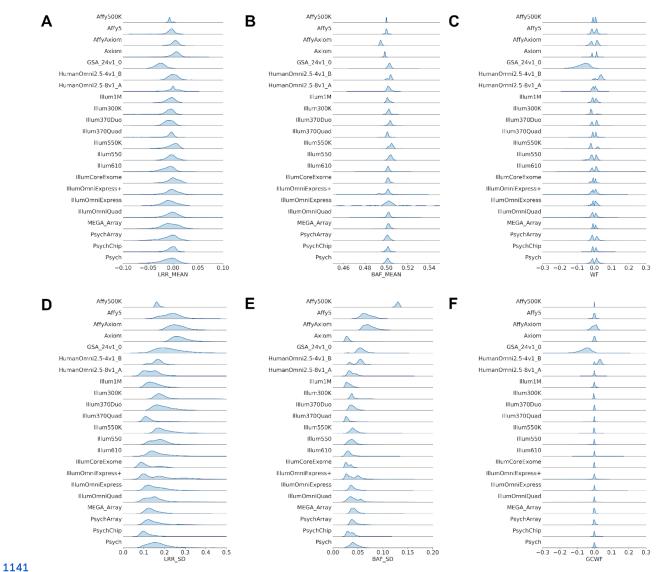
1032 NAHR CNVs were genotyped based on CNV calls with >50% reciprocal overlap with the 1033 locus. For complex loci with several breakpoints and multiple subregions (BP1-BP2, 1034 BP2-BP3, BP3-BP4...), such as 15q11-13 and 22q11, each subregion was genotyped using 1035 one-way overlap with CNVs, and specific alleles were called based on the subregions that 1036 were spanned by each CNV. For example, a DEL that spans 22q11.21 A-B, B-C, and C-D 1037 would be called "22q11.2 A-D".

1039 For single genes, we tested counts for predicted loss of function (LoF) variants (DELs that 1040 intersect with exons) and for predicted gain of function (DUPs that span at least one 1041 full-length isoform. For single gene loci we also compared associations for intronic DELs 1042 and DELs predicted to cause LoF or an in-frame deletion (**Fig. 4**).

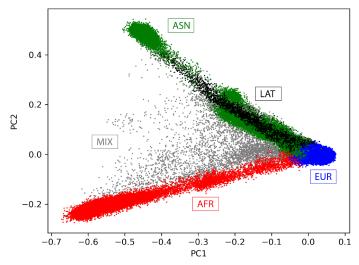
1044 Testing association of genome-wide CNV burden

The CNV burden of deletions and duplications was tested by logistic regression, controlling to the confounding variables such as sex, genotyping platform, and 10 ancestry principal components (PCs) derived from SNP genotypes. CNV burden was calculated for each platform to control for differences in probe coverage between different cohorts.

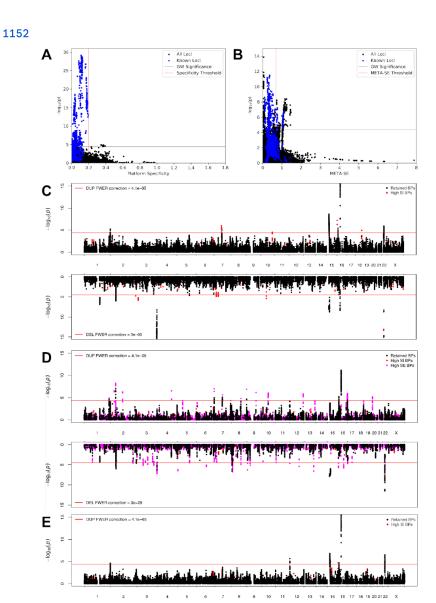
```
1049 SE-weighted meta-analysis was used to estimate CNV burden using METAL 30 since
1050 N-weighted meta-analysis does not provide effect sizes.
1052 For analysis of genome-wide CNV burden, the number of base pairs that overlapped a CNV
1053 genome-wide was used as the independent variable (Burden Model 1) and CNV burden
1054 was calculated by comparing it to a model that only contained covariates (Null Model).
1055 CNV burden was also calculated for CNVs > 1Mb in size with the same approach (Burden
1056 Model 2, Null Model). Genes were partitioned into two tiers according to their pLI score:
1057 high pLI (T1; pLI>0.5) and low pLI (T2; pLI ≤0.5). CNV burden was calculated for all genes
1058 (Burden Model 3A, Gene Null Model), Tier 1 genes (Burden Model 3B, Gene Null
1059 Model), and Tier 2 genes (Burden Model 3C, Gene Null Model) while controlling for the
1060 out-of-category genome-wide burden defined as the number of base pairs that do not
1061 overlap with the gene category being tested. CNV burden was calculated for the GWS loci
1062 (Burden Model 4A, Null Model), clinically-reportable CNVs (Burden Model 4B, Null
1063 Model), and GWS loci + clinically-reportable CNVs (Burden Model 4C, Null Model)
1064 categories by counting the number of CNVs an individual carried in each category.
1065
1066 Burden Model 1: aff \sim # of base pairs overlapping CNV + sex + PCs
1067 Burden Model 2: aff \sim # of base pairs overlapping CNV > 1Mb + sex + PCs
1068 Burden Model 3A: aff \sim # of base pairs overlapping genes and CNV + OOC + sex + PCs
1069 Burden Model 3B: aff \sim # of base pairs overlapping T1 genes and CNV + OOC + sex + PCs
1070 Burden Model 3C: aff \sim # of base pairs overlapping T2 genes and CNV + OOC + sex + PCs
1071 Burden Model 4A: aff \sim # of CNVs overlapping GWS loci + sex + PCs
1072 Burden Model 4B: aff \sim # of CNVs overlapping clinically reportable CNVs + sex + PCs
1073 Burden Model 4C: aff \sim # of CNVs overlapping GWS & clinically reportable CNVs + sex + PCs
1074 Null Model: aff \sim sex + PCs
1075 Gene Null Model: aff \sim 00C + sex + PCs
1076
1077 Estimation of CNV frequencies in each diagnostic category
1078 As mentioned above, it is necessary to control for genotyping platform when estimating the
1079 relative frequencies of CNVs in cases and controls. Thus, the CNV frequencies in cases for each
1080 category in Fig. 2A were derived from the odds ratio estimates from meta-analysis of CNV
1081 counts. We use the observed control frequency and the odds ratio from meta-analysis of CNV
1082 burden across platforms (Burden Model 4, Null Model, Table S6) to produce an accurate
1083 estimate of CNV case frequency (Equation 5).
1084
1085 Equation 5: freq_{case} = \frac{OR*freq_{ctrl}}{1+(freq_{ctrl}*(OR-1))}
1086 freq<sub>ctrl</sub>: CNV frequency in the combined control sample
1087
1088 Total variance explained by CNVs
1089 The proportion of variance explained by CNVs was determined by calculating Nagelkerke's
1090 R<sup>2</sup> between a CNV model and a null model. Nagelkerke's R<sup>2</sup> was calculated for each platform
1091 separately to control for differences in probe coverage between different cohorts.
```

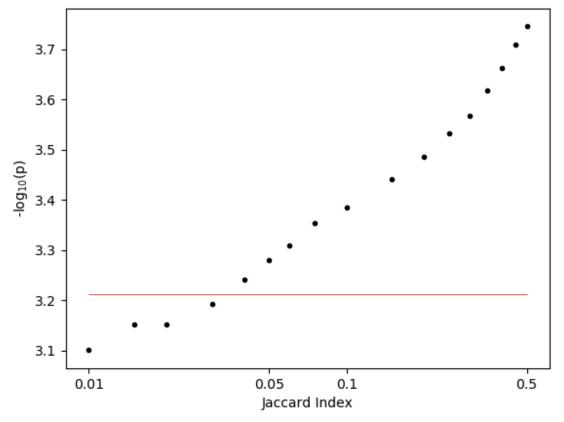

1092 Bootstrapping was implemented to estimate standard errors for the R² estimate on each

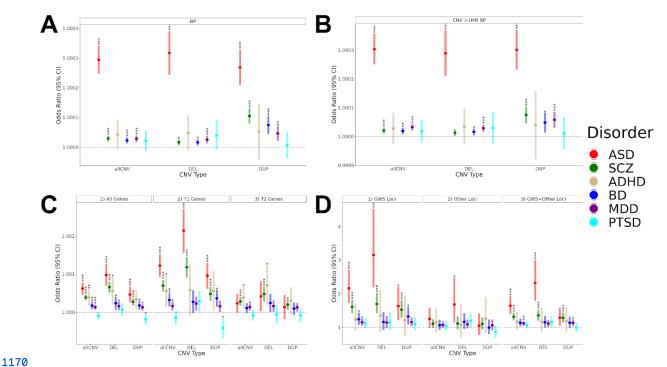
```
1093 platform and summary statistics were combined through meta-analysis using the metafor
1094 package in R 98.
1095
1096 Nagelkerke's R<sup>2</sup> was calculated for genome-wide burden of length, loci that were
1097 genome-wide significant in our study, clinically-reportable CNVs, and the combination of all
1098 categories. The R<sup>2</sup> estimate for genome-wide burden of length was tested by adding the
1099 length of all DELs and DUPs separately for each individual and comparing a logistic
1100 regression model of aggregate length and covariates (Burden Model) against a model with
1101 only covariates (Null Model). To estimate R<sup>2</sup> for the GWS loci and clinically-reportable
1102 CNVs, a genotype matrix was created for each category (separate genotypes for DEL and
1103 DUP) and a logistic regression model with each locus genotype as a separate variable plus
1104 covariates (Genotype Model) was compared against a model with only covariates (Null
1105 Model). The genotype matrix for GWS loci and clinically-reportable CNVs was then
1106 combined and supplemented with the genome-wide burden annotations (DEL and DUP) to
1107 estimate the R<sup>2</sup> for the combined genotype and genome-wide burden using the same
1108 method (Combined model, Null Model).
1109
1110 Burden Model: aff \sim # of base pairs overlapping DEL + # of base pairs overlapping DUP
        + sex + PCs
1111
1112 Genotype Model: aff \sim CNV genotype + sex + PCs
1113 Combined Model: aff \sim CNV genotype + # of base pairs overlapping DEL
        + # of base pairs overlapping DUP + sex + PCs
1115 Null Model: aff \sim sex + PCs
1116
1117 Estimating effect sizes for CNVs at 18 loci across 6 diagnostic categories
1118 Effect size estimates from N-weighted meta-analysis are scaled as a Z-score by default. To
1119 derive estimates of the odds ratio for each CNV, a mega-analysis was performed on the
1120 combined platforms, and odds ratio estimates were added to Table S9. For associations
1121 with high standard error (SEM>20) in the mega-analysis (due to zero counts in cases or
1122 controls), we applied a continuity correction to the effect size estimate similar to the
1123 Haldane-Anscombe correction for estimating odds ratios when there is a zero count in a
1124 contingency table 99 100. To calculate the odds ratio of a CNV that contains a zero count in
1125 cases or controls, we added a count of 1 to each cell in the contingency table by randomly
1126 sampling 4 subjects from the cohort with replacement (duplicating 2 cases and 2 controls).
1127 then the appropriate genotypes were assigned to each (1 case with CNV, 1 case no CNV, 1
1128 control with CNV, 1 control no CNV), and the four subjects were added to the sample.
1129
1130
1131 Assembling HiFi reads from samples carrying the SMYD3 duplication
1132 HiFi long-read whole genome sequencing was performed on 3 samples using the PacBio
1133 Revio platform. Minimap2 v2.24 was used for alignment, DeepVariant v1.5 for variant
1134 calling, WhatsHap v2.0 for phasing and haplotagging reads, and Flye v2.9.2 for assembly.
1135
1136 Supplemental Material
```

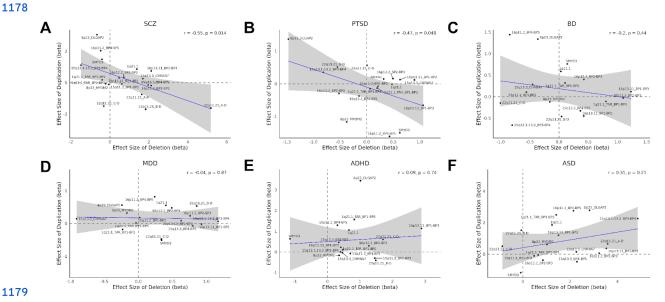

1139 Supplementary Figures

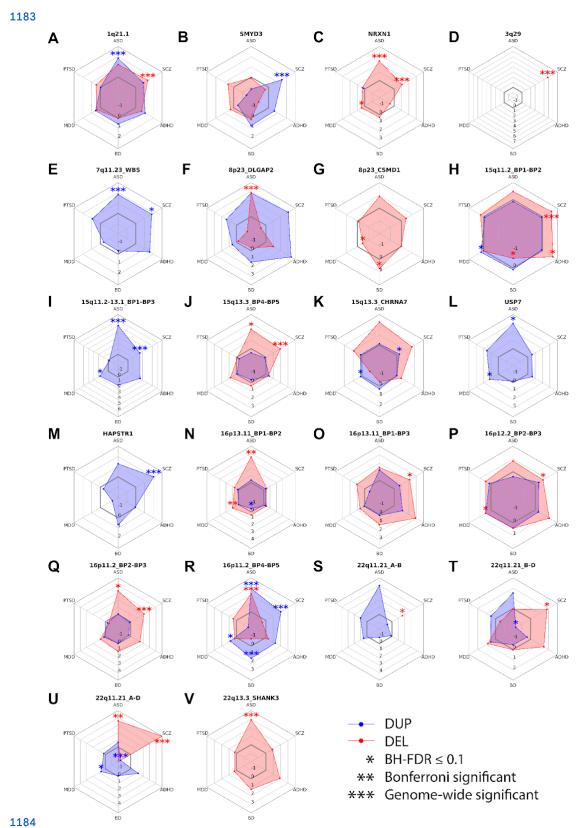
1140


1149


1142 Figure S1: QC metrics across different platforms in the current PGC CNV study. For each platform, we show the 1143 distribution of each QC metric at the sample level including A) The mean Log R Ratio (LRR_MEAN), B) The mean B Allele 1144 Frequency (BAF_MEAN), C) Waviness Factor (WF) D) Log R Ratio standard deviation (LRR_SD), E) B Allele Frequency 1145 standard deviation (BAF_SD), and F) GC waviness factor (GCWF). LRR_SD measures the variability of LRR across a sample 1146 while BAF_SD measures the variability of BAF across a sample. Smaller standard deviation values lead to more accurate CNV 1147 calling. WF measures the total amount of fluctuation in signal intensity in a sample while GCWF measures the amount of 1148 signal intensity fluctuation explained by local GC content.


1151 Figure S2: Sample groupings for all individuals in the current PGC CNV study.


1154 Figure S3: Platform/dataset specificity index filter and CNV GWAS for SCZ shows platform-specific spurious
1155 associations. -log 10 (pvalue) from the SCZ CNV GWAS vs. A) specificity index for platform and B) META-SE standard error are
1156 shown. Deletions and duplications are both included. Previously identified SCZ loci are shown in blue and the rest of the
1157 breakpoints are shown in black. The known loci cluster near lower specificity values and low SE while the spurious
1158 associations that need to be filtered cluster at high SI values and high SE. A threshold of 0.6 SI was chosen to filter out CNVs
1159 coming from a single platform and 0.2 SI for dataset. N-weighted meta-analysis was chosen instead of a threshold for
1160 META-SE. C) Mega-analysis CNV GWAS in SCZ controlling for genotyping platform as a covariate does not properly correct for
1161 genotyping platform. D) CNV GWAS using SE-weighted meta-analysis across platforms does not properly account for
1162 case/control imbalances in different platforms and produces spurious associations with high standard error. E) CNV GWAS
1163 using N-weighted meta-analysis correctly accounts for differences in genotyping platform and case/control imbalances.
1164 Breakpoints filtered by the platform/dataset specificity filter are shown in red. Breakpoints with high standard error are
1165 shown in magenta. Black are all retained breakpoints.


1166
1167 Figure S4: P-value thresholds for different values of Jaccard Index. The red line shows the p-value (6.14x10⁻⁴) that gives
1168 an FWER of 0.05 based on permutations in the SCZ cohort on chr1.
1169

1171 Figure S5: Effect sizes of rare CNVs differ by diagnosis, genes, and regions. A) A CNV burden test for all base pairs was 1172 performed for each diagnosis. Rare CNVs contribute to risk in most psychiatric conditions at different magnitudes. B) A CNV 1173 burden test was performed for large CNVs with length >1Mb. Results are very similar to all CNVs (Panel A). C) Genes were 1174 stratified by their probability of loss of function intolerance (pLI). Tier 1 Genes are defined as pLI > 0.5 and Tier 2 genes have 1175 pLI \leq 0.5. CNVs overlapping Tier 1 genes are enriched in cases with the largest effects in ASD and SCZ. D) CNV burden was 1176 tested within the genome-wide significant (GWS) loci identified in this study, clinically-reportable CNVs that were not 1177 genome-wide significant in this study (Other loci), and in a combined group (GWS+Other loci) **Table S6.**

1180 Figure S6: Dose-dependent effects of rare CNVs in different psychiatric traits. Effect sizes for duplications and deletions 1181 show a significant inverse dosage relationship for A) SCZ and B) PTSD. Dosage relationship curves are also shown for C) BD 1182 D) MDD E) ADHD and F) ASD. Table S9.

1185 Figure S7: Effect Size across 6 diagnoses for each locus. Effect sizes were estimated by mega-analysis. For summary **1186** statistics with high SE, effect sizes were re-estimated with continuity correction. **Table S9**.

1187 References

- 1188 1. Cross-Disorder Group of the Psychiatric Genomics Consortium *et al.* Genetic relationship
- between five psychiatric disorders estimated from genome-wide SNPs. *Nat. Genet.* **45**, 984–994 (2013).
- 1191 2. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. *Nature* **511**, 421–427 (2014).
- 1193 3. Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. *Cell* 1194 148, 1223–1241 (2012).
- 1195 4. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes.
- 1196 Nature **614**, 492–499 (2023).
- 1197 5. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia.
- 1198 *Nature* **604**, 509–516 (2022).
- Sebat, J. *et al.* Strong association of de novo copy number mutations with autism. *Science* **316**, 445–449 (2007).
- Walsh, T. *et al.* Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. *Science* **320**, 539–543 (2008).
- 1203 8. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. *Nature* **455**, 237–241 (2008).
- 1205 9. Kendall, K. M. *et al.* Association of Rare Copy Number Variants With Risk of Depression. *JAMA Psychiatry* **76**, 818–825 (2019).
- 1207 10. Maihofer, A. X. *et al.* Rare copy number variation in posttraumatic stress disorder. *Mol. Psychiatry* **27**, 5062–5069 (2022).
- 1209 11. Pinto, D. *et al.* Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. *Am. J. Hum. Genet.* **94**, 677–694 (2014).
- 1211 12. Kirov, G. *et al.* De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. *Mol. Psychiatry* **17**, 142–153 (2012).
- 1213 13. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a
- genome-wide study of 41,321 subjects. *Nat. Genet.* **49**, 27–35 (2017).
- 1215 14. Weiss, L. A. *et al.* Association between microdeletion and microduplication at 16p11.2 and autism. *N. Engl. J. Med.* **358**, 667–675 (2008).
- 1217 15. Sanders, S. J. *et al.* Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. *Neuron* **87**, 1215–1233 (2015).
- 1219 16. McCarthy, S. E. *et al.* Microduplications of 16p11.2 are associated with schizophrenia. *Nat. Genet.* **41**, 1223–1227 (2009).
- 1221 17. Kirov, G. *et al.* Neurexin 1 (NRXN1) deletions in schizophrenia. *Schizophr. Bull.* **35**, 851–854 (2009).
- 1223 18. Karayiorgou, M., Simon, T. J. & Gogos, J. A. 22q11.2 microdeletions: linking DNA structural
- variation to brain dysfunction and schizophrenia. *Nat. Rev. Neurosci.* **11**, 402–416 (2010).
- 1225 19. Stefansson, H. *et al.* Large recurrent microdeletions associated with schizophrenia. *Nature* **455**, 232–236 (2008).
- 1227 20. Sebat, J., Levy, D. L. & McCarthy, S. E. Rare structural variants in schizophrenia: one disorder,
- multiple mutations; one mutation, multiple disorders. *Trends Genet.* **25**, 528–535 (2009).
- 1229 21. Kendall, K. M. et al. Cognitive Performance Among Carriers of Pathogenic Copy Number
- 1230 Variants: Analysis of 152,000 UK Biobank Subjects. *Biol. Psychiatry* **82**, 103–110 (2017).
- 1231 22. Stefansson, H. *et al.* CNVs conferring risk of autism or schizophrenia affect cognition in controls. *Nature* **505**, 361–366 (2014).
- 1233 23. Qiu, Y. et al. Oligogenic Effects of 16p11.2 Copy-Number Variation on Craniofacial Development.
- 1234 Cell Rep. 28, 3320–3328.e4 (2019).
- 1235 24. Owen, D. *et al.* Effects of pathogenic CNVs on physical traits in participants of the UK Biobank.

- *bioRxiv* (2018) doi:10.1101/355297.
- 1237 25. Crawford, K. et al. Medical consequences of pathogenic CNVs in adults: analysis of the UK
- 1238 Biobank. J. Med. Genet. **56**, 131–138 (2019).
- 1239 26. Antaki, D. *et al.* A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. *Nat. Genet.* **54**, 1284–1292 (2022).
- 1241 27. Davies, R. W. *et al.* Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. *Nat. Med.* **26**, 1912–1918 (2020).
- 1243 28. Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic address:
- plee0@mgh.harvard.edu & Cross-Disorder Group of the Psychiatric Genomics Consortium.
- Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric
- disorders. *Cell* **179**, 1469–1482.e11 (2019).
- 1247 29. Wellcome Trust Case Control Consortium et al. Genome-wide association study of CNVs in
- 1248 16,000 cases of eight common diseases and 3,000 shared controls. *Nature* **464**, 713–720 (2010).
- 1250 30. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* **26**, 2190–2191 (2010).
- 1252 31. Riggs, E. R. et al. Copy number variant discrepancy resolution using the ClinGen dosage
- sensitivity map results in updated clinical interpretations in ClinVar. *Hum. Mutat.* **39**,
- 1254 1650–1659 (2018).
- 1255 32. ClinGen. Dosage Sensitivity. https://search.clinicalgenome.org/kb/gene-dosage.
- 1256 33. Guo, R. & Haldeman-Englert, C. R. 1q21.1 recurrent deletion. in *GeneReviews*(®) (University of Washington, Seattle, Seattle (WA), 1993).
- 1258 34. Mulle, J. G. *et al.* 3q29 recurrent deletion. in *GeneReviews*(®) (University of Washington, Seattle, Seattle (WA), 1993).
- 1260 35. Chung, W. K., Herrera, F. F. & Simon's Searchlight Foundation. Health supervision for children and adolescents with 16p11.2 deletion syndrome. *Cold Spring Harb. Mol. Case Stud.* **9**, (2023).
- 1262 36. Óskarsdóttir, S. *et al.* Updated clinical practice recommendations for managing children with 22q11.2 deletion syndrome. *Genet. Med.* **25**, 100338 (2023).
- 1264 37. Lionel, A. C. *et al.* Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. *Hum. Mol.*
- 1266 Genet. 23, 2752–2768 (2014).
- 1267 38. Vrijenhoek, T. *et al.* Recurrent CNVs disrupt three candidate genes in schizophrenia patients. *Am. J. Hum. Genet.* **83**, 504–510 (2008).
- Hogart, A., Wu, D., LaSalle, J. M. & Schanen, N. C. The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. *Neurobiol. Dis.* **38**, 181–191 (2010).
- 1271 40. Grozeva, D. *et al.* Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. *Arch. Gen. Psychiatry* **67**, 318–327 (2010).
- 1273 41. Charney, A. W. *et al.* Contribution of Rare Copy Number Variants to Bipolar Disorder Risk Is Limited to Schizoaffective Cases. *Biol. Psychiatry* **86**, 110–119 (2019).
- 1275 42. Rucker, J. J. H. *et al.* Phenotypic Association Analyses With Copy Number Variation in Recurrent Depressive Disorder. *Biol. Psychiatry* **79**, 329–336 (2016).
- 1277 43. Cooper, G. M. *et al.* A copy number variation morbidity map of developmental delay. *Nat. Genet.*1278 **43**, 838–846 (2011).
- 1279 44. Xu, G., Strathearn, L., Liu, B., Yang, B. & Bao, W. Twenty-year trends in diagnosed
- attention-deficit/hyperactivity disorder among US children and adolescents, 1997-2016. *JAMA Netw. Open* **1**, e181471 (2018).
- 1282 45. Maenner, M. J. et al. Prevalence and characteristics of Autism spectrum disorder among
- children aged 8 years Autism and Developmental Disabilities Monitoring network, 11 sites,
- United States, 2020. *MMWR Surveill. Summ.* **72**, 1–14 (2023).
- 1285 46. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat.

- 1286 Genet. **51**, 431–444 (2019).
- 1287 47. Trubetskoy, V. *et al.* Mapping genomic loci implicates genes and synaptic biology in schizophrenia. *Nature* **604**, 502–508 (2022).
- Mullins, N. *et al.* Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. *Nat. Genet.* **53**, 817–829 (2021).
- 49. Howard, D. M. *et al.* Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. *Nat. Neurosci.* **22**,
- **1293** 343–352 (2019).
- 1294 50. Nievergelt, C. M. *et al.* International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. *Nat. Commun.* **10**, 4558 (2019).
- 1296 51. Demontis, D. *et al.* Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. *Nat. Genet.* **51**, 63–75 (2019).
- 1298 52. Hamad, A. *et al.* Expanding the phenotypic spectrum of Chromosome 16p13.11 microduplication: A multicentric analysis of 206 patients. *Eur. J. Med. Genet.* **66**, 104714 (2023).
- 1300 53. Woodward, K. J. *et al.* Atypical nested 22q11.2 duplications between LCR22B and LCR22D are associated with neurodevelopmental phenotypes including autism spectrum disorder with incomplete penetrance. *Mol. Genet. Genomic Med.* **7**, e00507 (2019).
- 1303 54. Rees, E. *et al.* Evidence that duplications of 22q11.2 protect against schizophrenia. *Mol. Psychiatry* **19**, 37–40 (2014).
- 1305 55. Liu, W., Liu, F., Xu, X. & Bai, Y. Replicated association between the European GWAS locus
 1306 rs10503253 at CSMD1 and schizophrenia in Asian population. *Neurosci. Lett.* 647, 122–128
 1307 (2017).
- 1308 56. Engchuan, W. *et al.* Psychiatric disorders converge on common pathways but diverge in cellular
 1309 context, spatial distribution, and directionality of genetic effects. *medRxiv* 1310 2025.07.11.25331381 (2025).
- 1311 57. Mefford, H. C. & Eichler, E. E. Duplication hotspots, rare genomic disorders, and common disease. *Curr. Opin. Genet. Dev.* **19**, 196–204 (2009).
- 1313 58. Lopes, I., Altab, G., Raina, P. & de Magalhães, J. P. Gene Size Matters: An Analysis of Gene Length in the Human Genome. *Front. Genet.* **12**, 559998 (2021).
- 1315 59. He, X. *et al.* Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. *PLoS Genet.* **9**, e1003671 (2013).
- 1317 60. Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription
- complexes cause common fragile site instability at the longest human genes. *Mol. Cell* **44**,
- 1319 966–977 (2011).
- 1320 61. Sarni, D. *et al.* 3D genome organization contributes to genome instability at fragile sites. *Nat. Commun.* **11**, 3613 (2020).
- 1322 62. Mortazavi, M. et al. Long-read genome sequencing in clinical psychiatry: RFX3
- haploinsufficiency in a hospitalized adolescent with autism, intellectual disability, and
- behavioral decompensation. *Am. J. Psychiatry* appiajp20240471 (2025).
- Modenato, C. *et al.* Effects of eight neuropsychiatric copy number variants on human brain structure. *Transl. Psychiatry* **11**, 399 (2021).
- Lin, A. *et al.* Reciprocal Copy Number Variations at 22q11.2 Produce Distinct and Convergent Neurobehavioral Impairments Relevant for Schizophrenia and Autism Spectrum Disorder. *Biol. Psychiatry* **88**, 260–272 (2020).
- 1330 65. Hippolyte, L. *et al.* The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition. *Biol. Psychiatry* **80**, 129–139 (2016).
- 1332 66. Nguyen, T.-D. *et al.* Genetic heterogeneity and subtypes of major depression. *Mol. Psychiatry* **27**, 1667–1675 (2022).
- 1334 67. Jacquemont, S. *et al.* Genes To Mental Health (G2MH): A Framework to Map the Combined Effects of Rare and Common Variants on Dimensions of Cognition and Psychopathology. *Am. J.*

- Psychiatry 179, 189-203 (2022). 1336
- 1337 68. Zhang, Y., Li, C. & Yang, Z. Is MYND domain-mediated assembly of SMYD3 complexes involved in calcium dependent signaling? Front. Mol. Biosci. 6, 121 (2019). 1338
- Bernard, B. I., Nigam, N., Burkitt, K. & Saloura, V. SMYD3: a regulator of epigenetic and signaling **1339** 69. 1340 pathways in cancer. Clin. Epigenetics 13, 45 (2021).
- 1341 70. Williams, J. B. et al. Inhibition of histone methyltransferase Smyd3 rescues NMDAR and cognitive deficits in a tauopathy mouse model. *Nat. Commun.* **14**, 91 (2023). 1342
- Fabini, E., Manoni, E., Ferroni, C., Rio, A. D. & Bartolini, M. Small-molecule inhibitors of lysine 1343 71. methyltransferases SMYD2 and SMYD3: current trends. Future Med. Chem. 11, 901–921 (2019). 1344
- 1345 72. Sanders, S. I. et al. Multiple recurrent DE Novo CNVs, including duplications of the 7q11.23
- 1346 Williams syndrome region, are strongly associated with autism. *Neuron* 70, 863–885 (2011).
- Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 **1347** 73. 1348 (2015).
- 1349 74. Qiao, H., Tian, Y., Huo, Y. & Man, H.-Y. Role of the DUB enzyme USP7 in dendritic arborization, neuronal migration, and autistic-like behaviors in mice. iScience 25, 104595 (2022). 1350
- **1351** 75. Chen, H. et al. The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the 1352 brain via a novel p53-independent ubiquitin signaling pathway. Cell Rep. 44, 115231 (2025).
- 1353 76. Zhang, X.-W. et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic 1354 domain for neurodegenerative disease therapy. Sci. Adv. 8, eabo0789 (2022).
- 1355 77. Amici, D. R. et al. C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways. *Proc. Natl. Acad. Sci. U. S. A.* **119**, e2111262119 (2022). 1356
- 1357 78. Debs, S. R., Rothmond, D. A., Zhu, Y., Weickert, C. S. & Purves-Tyson, T. D. Molecular evidence of altered stress responsivity related to neuroinflammation in the schizophrenia midbrain. J. 1358 Psychiatr. Res. 177, 118-128 (2024). 1359
- 1360 79. Kushima, I. et al. Cross-disorder analysis of genic and regulatory copy number variations in 1361 bipolar disorder, schizophrenia, and autism spectrum disorder. Biol. Psychiatry 92, 362-374 1362
- 1363 80. Wilson, P. M., Fryer, R. H., Fang, Y. & Hatten, M. E. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J. Neurosci. 1364 30, 8529-8540 (2010). 1365
- 1366 81. Behesti, H. et al. ASTN2 modulates synaptic strength by trafficking and degradation of surface proteins. Proc. Natl. Acad. Sci. U. S. A. 115, E9717-E9726 (2018). 1367
- 1368 82. The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium.
- 1369 Genome-wide association study identifies five new schizophrenia loci. *Nat. Genet.* **43**, 969–976 1370 (2011).
- 1371 83. Coleman, I. R. I. et al. The genetics of the mood disorder spectrum: Genome-wide association analyses of more than 185,000 cases and 439,000 controls. Biol. Psychiatry 88, 169-184 1372

(2020).1373

- Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar **1374** 84. 1375 disorder. Nat. Genet. 51, 793-803 (2019).
- 1376 85. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. 1377
- 1378 Nat. Neurosci. 18, 199-209 (2015).
- Manickam, K. et al. Exome and genome sequencing for pediatric patients with congenital **1379** 86. anomalies or intellectual disability: an evidence-based clinical guideline of the American
- College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 2029–2037 (2021). 1381
- 1382 87. Schaefer, G. B., Mendelsohn, N. J. & Professional Practice and Guidelines Committee. Clinical
- genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline 1383 1384 revisions. Genet. Med. 15, 399-407 (2013).
- 1385 88. Auwerx, C. et al. Rare copy-number variants as modulators of common disease susceptibility.

- 1386 *Genome Med.* **16**, 5 (2024).
- 1387 89. Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal component analysis of Biobank-scale genotype datasets. *Bioinformatics* **33**, 2776–2778 (2017).
- 1389 90. Chen, C.-Y. *et al.* Improved ancestry inference using weights from external reference panels. *Bioinformatics* **29**, 1399–1406 (2013).
- 1391 91. Subbiah, M. & Srinivasan, M. R. Classification of 2×2 sparse data sets with zero cells. *Stat. Probab. Lett.* **78**, 3212–3215 (2008).
- 1393 92. Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. *Nat. Rev. Genet.* **11**, 459–463 (2010).
- 1395 93. Zhang, Y., Guan, W. & Pan, W. Adjustment for population stratification via principal components in association analysis of rare variants. *Genet. Epidemiol.* **37**, 99–109 (2013).
- 1397 94. Lupski, J. R. & Stankiewicz, P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. *PLoS Genet.* **1**, e49 (2005).
- 1399 95. Adam, M. P. et al. GeneReviews(®). (University of Washington, Seattle, Seattle (WA), 1993).
- 1400 96. Clinical Genome Resource. Welcome to ClinGen. https://clinicalgenome.org/.
- 1401 97. Home OMIM. https://www.omim.org/.
- 1402 98. Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. *J. Stat. Softw.* **36**, 1–48 (2010).
- Haldane, J. B. S. The mean and variance of the moments of chi-squared when used as a test of homogeneity, when expectations are small. *Biometrika* **29**, 133–134 (1940).
- 1406 100. Anscombe, F. J. On estimating binomial response relations. *Biometrika* 43, 461–464 (1956).