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337 Abstract

338 Rare copy number variants (CNVs) are a key component of the genetic basis of psychiatric
339 conditions, but have not been well characterized for most. We conducted a genome-wide
340 CNV analysis across six diagnostic categories (N = 574,965): autism (ASD), ADHD, bipolar
341 disorder (BD), major depressive disorder (MDD), PTSD, and schizophrenia (SCZ). We

342 identified 35 genome-wide significant associations at 18 loci, including novel associations
343 in SCZ (SMYD3, USP7-HAPSTR1) and in the combined cross-disorder analysis (ASTNZ2). Rare
344 CNVs accounted for 1-3% of heritability across diagnoses. In ASD, associations were

345 uniformly positive, consistent with autism having diverse etiologies and clinical

346 presentations. By contrast, CNVs showed a dose-dependent relationship for other

347 diagnoses, including SCZ and PTSD, with reciprocal deletions and duplications having

348 inversely correlated effects and distinct genotype-phenotype relationships. Our findings
349 suggest that genes have effects that are both dose-dependent and pleiotropic, such that a
350 positive influence on one dimension of psychopathology may be accompanied by positive
351 or negative effects on others.
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352 Introduction

353 The genetic architecture of neuropsychiatric traits is highly polygenic and consists of a wide
354 range of allelic effects, from common variants of small effect * to rare variants of large

355 effect . In particular, rare copy number variants (CNVs) have provided key insights into
356 the etiology of psychiatric conditions *. Aggregate measures of rare CNV burden provided
357 the earliest evidence for the contribution of rare variants to autism spectrum disorder

358 (ASD) © and schizophrenia (SCZ) 7%, and studies of rare variants are beginning to make

359 progress in major depressive disorder (MDD) ° and post-traumatic stress disorder (PTSD)
360 '°. In addition, genome-wide association studies of rare CNVs have been vital for the

361 discovery of genes and molecular pathways underlying psychiatric conditions. Analysis of
362 CNVs within genes has implicated pathways involved in chromatin regulation ** and

363 synaptic function ', Studies in larger samples have found strong associations of specific
364 rare CNVs with ASD '* and SCZ '**°. Subsequent whole exome sequencing studies of ASD
365 18 and SCZ ° have identified a wider array of rare gene mutations that further implicate
366 pathways in synaptic function and genetic regulation of fetal brain development.

367

368 Despite these discoveries, the relationship of genes to the broad spectrum of psychiatric
369 traits is not well defined. No rare variant has yet been found that is specific to a psychiatric
370 diagnosis. Each rare CNV is associated with a variety of mental health and

371 neurodevelopmental conditions ?° and cognitive %%, physical ?** and general medical ©
372 conditions in the general population. These findings are consistent with significant genetic
373 overlap between diagnostic categories, and are consistent with rare variants being

374 pleiotropic, i.e. each having variable expressivity for multiple psychiatric traits **?’.

375

376 Large scale collaborative studies of CNV have the potential to identify novel gene

377 associations and new targets for development of therapeutics. Furthermore, a

378 cross-disorder approach, in which a comparative analysis is done for several psychiatric
379 conditions in parallel, could give a more granular dissection of genotype-phenotype

380 relationships in genes and pathways. Genome-wide association studies (GWAS) are being
381 applied on a large scale to characterize common variant influence and shared genetic risk
382 factors across multiple psychiatric conditions ?® in the Psychiatric Genomics Consortium
383 (PGC). Here we apply the large-scale collaborative approach of the PGC to the discovery and
384 characterization of rare variants that influence mental health by genome-wide analysis of
385 CNVs in 574,965 individuals across six diagnostic categories.

386

387 Results

388

389 Rare CNV GWAS identifies 35 genome-wide significant associations at 18 loci.

390 We aggregated microarray intensity files from GWAS datasets to obtain rare CNV calls in
391 574,965 individuals (Table S1) including population controls (N = 441,958) and cases of
392 SCZ (N = 36,865), ASD (N =13,545), BD (N =23,119), MDD (N = 38,917), PTSD (N =

393 17,839), and ADHD (N = 3,544). Individuals spanned multiple ancestries including 513,287
394 subjects classified as european (EUR), 27,964 asian (ASN/ASAM), 17,606 african

395 (AFR/AFAM) samples, 5,812 Latin-X (LAT), and 10,296 subjects of mixed ancestry (Table
396 S2). CNVs were called using a centralized pipeline for systematic CNV calling across

397 genotyping platforms and cohorts. QC of the dataset was performed at the levels of samples
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398 (Fig. S1), CNV calls, and probes, as described in the methods. Probe normalization methods
399 and CNV calling accuracy are optimal for rare variants and a majority of common CNVs are
400 captured by SNPs ?°; thus, the call set was restricted to CNVs with frequencies <2%.

401

402 To identify rare genomic loci that contribute to psychiatric conditions, a CNV GWAS was
403 performed in each group: ASD, ADHD, SCZ, PTSD, MDD, BD as well as in the combined cases,
404 referred to as the cross-disorder group (XD). Statistical association tests were performed
405 for CNV counts in cases and controls at each probe with a CNV across the genome by

406 logistic regression, controlling for cohort, sex and ancestry principal components (PCA in
407 Fig. S2). Summary statistics were generated separately for each genotyping platform.

408 Meta-analysis of probe-level summary statistics on CNV associations was performed with
409 METAL *. Parameters for meta-analysis were optimized to control for statistical

410 confounders of CNV GWAS, including heterogeneity of genotyping platforms and sparse
411 data on rare variants (Fig. S3). Genome-wide multiple test correction was estimated by
412 permutation in the SCZ cohort to determine the appropriate threshold (Jaccard index) for
413 collapsing correlated adjacent probes to estimate the genome wide correction for each

414 diagnostic category (Fig. S4). CNV GWAS was carried out for deletions (DEL) and

415 duplications (DUP) separately in each diagnosis and in the combined XD cohort.

416 Association analyses identified 35 genome-wide significant associations for 18

417 independent CNV loci (Fig. 1a, Table S3).

418

419 These results demonstrate a broad set of CNV associations that meet genome-wide

420 significance for ASD, SCZ, BD or XD samples. These include many DELs or DUPs that are
421 routinely reported in clinical genetic testing 3*?, including CNVs at 1q21.1%, 3q29**,

422 16p11.2 **,22q11.2 * and several others (Table S3). In addition, we find novel associations
423 with CNVs not established previously as causal variants for psychiatric traits. Gene

424 duplications of SMYD3 were associated with SCZ in this study and have not been described
425 elsewhere in the clinical genetics literature. DELs of ASTNZ reached genome-wide

426 significance in the XD cases, consistent with ASTNZ loss of function having a broad

427 association with multiple psychiatric conditions *’*%, Duplications of the genes USP7 and
428 HAPSTR1 showed a novel association with SCZ in this study.

429

430 CNV alleles at five loci showed genome-wide significant associations with more than one
431 diagnosis (1q21.1, NRXN1, 15q11.2 BP1-BP2, 15q11.2-13.1, 16p11.2 proximal, Table S3)
432 and three reached genome-wide significance only in the XD cohort (ASTNZ, 16p13.11,

433 16p12.2 BP2-BP3). These results are consistent with the well-documented pleiotropy of
434 psychiatric risk alleles **° and the corresponding overlap in the genetic basis of different
435 psychiatric conditions. ***® For example, alarge DUP of 15q11.2-13.1, one of the most
436 well documented rare variants associated with ASD *, is also significantly associated with
437 SCZ (Fig. 1b, green), and smaller DELSs of this region, 15q11.2 (BP1-BP2/CYFIP1) DEL"
438 and 15q13.3 DEL®'°, were also associated with SCZ (Fig. 1b). 16p13.11 DEL and 16p12.2
439 DEL were associated with XD (Fig. 1c, gray) while reciprocal DELs and DUPs of 16p11.2
440 proximal show contrasting associations, the DEL being most significantly associated with
441 ASD ' and the DUP most significantly associated with SCZ '® as well as BD and ASD (Fig.
442 1c).

443
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445 Figure 1: Detection of 35 genome-wide significant associations at 18 loci. A) CNV GWAS was performed at the

446 breakpoint level. CNV GWAS Manhattan plots for all individual disorders were superimposed on top of each other to produce
447 a porcupine plot of all associations in 6 diagnostic categories and in XD. The black line shows the approximate genome-wide
448 significance threshold (DUP: 3.2x10°, DEL: 2.5x10”) since the threshold varies by diagnosis. The genome-wide significance
449 thresholds for the 7 groups are ASD (DUP: 4.9x10°, DEL: 3.5x10~), ADHD (DUP: 4.9x10°, DEL: 3.4x10°), SCZ (DUP: 4.1x107,
450 DEL: 3.0x10°°), PTSD (DUP: 4.7x10°, DEL: 3.4x107°), MDD (DUP: 4.4x10”, DEL: 3.1x10°®), BD (DUP: 4.3x10°, DEL: 3.1x10°),
451 and XD (DUP: 3.2x10°°, DEL: 2.5x10°°). The directionality of effect for each genome-wide significant hit is indicated by upward
452 (positive) and downward (negative) facing triangles. B) Zooming into the cluster of associations on chr15 shows how

453 psychiatric associations differ substantially between CNVs. SCZ is strongly associated with DELs in 15q11.2 and 15q13.3. In
454 contrast, a DUP spanning 15q11.2-13.1 has its strongest association with ASD and to a lesser extent SCZ. C) Zooming into the

455
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Rare CNVs explain 1-3% of the heritability in all diagnostic categories.

We and others have shown that the genome-wide burden of CNVs is a significant
contributor to ASD and SCZ °®'%. Conversely, reports of weak associations of CNV burden
with BD ***!, MDD*, and PTSD '° imply that rare variants could have a comparatively small
contribution to the genetic basis of other psychiatric conditions with adult onset. The
combined frequency of CNVs at 18 genome-wide significant loci are present in 1.6-3.1% of
cases (Fig. 2A, Table S4) and 1.4% of controls.

cluster of associations on chr16 shows how CNV type can result in different psychiatric outcomes within a locus. A DUP at
16p11.2 proximal is strongly associated with SCZ while a DEL in the same location is strongly associated with ASD Table S3.

Estimates of the total CNV burden genome-wide suggest significant disparities between

467 diagnostic categories in the contributions of rare variants. The burden of risk alleles

468 (genome-wide significant) was increased in ASD and to a lesser extent in SCZ, BD and MDD;
469 however the collective frequency of risk alleles in ADHD and PTSD was not significantly

470 greater than in controls (Fig. 2A). The total variance explained by CNV burden (length)

471 was estimated by meta-analysis of Nagelkerke’s R? estimates from logistic regression. As

11


https://paperpile.com/c/BhjrYH/Hd3gW+UG21U+B6BIX+3xUJr
https://paperpile.com/c/BhjrYH/8ZMZ+4JRb
https://paperpile.com/c/BhjrYH/iqab
https://paperpile.com/c/BhjrYH/bByN8
https://doi.org/10.1101/2025.07.11.25331310

medRxiv preprint doi: https://doi.org/10.1101/2025.07.11.25331310; this version posted July 16, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

472 expected, variance explained by genome wide burden was greatest for ASD (R*=0.86%) and
473 SCZ (R*=0.28%) and weaker for BD (R*=0.11%), ADHD (R*=0.07%), MDD (R*=0.03%),

474 PTSD (R?=2.78x107)(Fig. 2B, Table S5). When we dissected CNV burden by functional

475 categories of length (bp), large CNVs (>1 Mb), and loss of function intolerance (pLI>0.5),
476 CNV burden for all diagnoses was increased in one or more functional categories (Fig. S5,
477 Table $6). We found modest evidence for a reduced CNV burden in loss-of-function

478 intolerant genes in PTSD relative to controls (Table S6). This weak effect could imply that
479 some rare variants reduce the probability of a PTSD diagnosis or it might be consistent with
480 case ascertainment of some PTSD cohorts selecting against traits attributable to deleterious
481 variants in genes (such as intellectual disability).

482

483 There was less disparity between diagnostic categories in the contribution of rare variants,
484 when we quantified variance explained by CNV genotype rather than their collective

485 burden. Estimation of Nagelkerke’s R* from logistic regression finds that CNVs at

486 genome-wide significant loci explain 0.2-1% of the variance across all 6 diagnostic

487 categories (Fig. 2B, Table S5). An additional 0.2-0.3% was explained by other

488 clinically-reportable CNVs ?**3 (Table S7) that were not genome-wide significant in our

489 study (Fig. 2B, Table S5). In total, the variance explained by CNV genotypes and

490 genome-wide burden combined was non-trivial in all disorders and ranged from 0.6% to
491 2% (Fig. 2B, Table S5). Transformation of the Nagelkerke’s R* to a liability scale gives

492 heritability estimates of 0.9% to 3% (Table S8).

493

494 When the six diagnoses were ranked based on the variance explained by rare CNVs (ASD >
495 SCZ > ADHD > BD > MDD > PTSD), the R? estimates in this study were correlated with

496 corresponding estimates of heritability from twin studies (Spearman’s rank correlation P =
497 0.0028, Table $8). However, when R? was converted to a liability scale, the correlation with
498 twin heritability was not significant (p = 0.48) and neither estimate was strongly correlated
499 with current estimates of SNP-based heritability (Table $8). Given that heritability

500 estimates rely on estimates of diagnosis prevalence that have been changing over time ***5,
501 we regard our estimates of Nagelkerke’s R* to be a more accurate representation of the

502 relative contributions of rare variants across the six diagnostic categories.

503
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505 Figure 2: Rare CNVs span a broad range of frequencies and effect sizes, and explain 0.6-2% of the variance in all

506 diagnostic categories. (A) Frequencies of CNVs in 6 diagnostic categories, Table S4. (B) Variance explained by rare CNV
507 genotype (R?) in each diagnosis was estimated for the combined loci by logistic regression. Loci were stratified for each

508 diagnosis into genome-wide significant loci, and “other” known pathogenic microdeletion and duplications that are routinely
509 reported in clinical genetic testing but do not reach genome-wide significance in this study. Diagnoses are ordered according
510 to their ranking in the “Combined Genotype and Genome Wide Burden’. Total variance explained by rare CNV was as follows:
511 PTSD (R2=0.58%), MDD (R2=0.74%), BD (R2=0.81%), ADHD (R2=0.85%)m SCZ (R2=1.11%), and ASD (R2=2.08%), results in
512 Table S5. (C) Effect sizes of significant loci in the CNV-GWAS are shown as a function of frequency. There was an average of
513 50.7 independent tests in each diagnostic category. Effect sizes are given for all CNVs that show at least one association that
514 meets BH-FDR<10% correction (open circles) In addition, all associations that meet Bonferroni correction for 50 tests

515 (P<0.001) or meet genome-wide significance are shown (see Methods) (solid circles). Effect sizes for significant SNPs from
516 previous SNP-GWAS were included to model variation effects across the full frequency spectrum. Results for DEL and DUP
517 effect sizes at 18 loci are in Supplementary Table S9.

518
519
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520 Characterizing pleiotropic effects of CNVs across 6 diagnoses

521 To gain a more complete view of the spectrum of diagnoses associated with each CNV, we
522 estimated the effect sizes for specific CNV alleles within 18 genome-wide significant loci
523 across 6 diagnostic categories. Within each association peak, distinct CNV alleles with

524 recurrent breakpoints were delineated (see Table S9). At association peaks where

525 breakpoints were not recurrent (i.e. were randomly distributed), individual genes were

526 tested (SMYD3 at 1q44, ASTNZ at 9933, USP7 and HAPSTR1 at 16p13.2, and DLGAPZ,

527 MYOMZ2 and CSMD1 at 8p23). We included all tests for which there were at least 12 CNVs in
528 the combined sample. In total, 50 alleles or genes were tested across 6 diagnoses, and 67
529 associations were found at a false discovery rate (BH-FDR) < 10%. (Table S9). Figure 2C
530 displays a trumpet plot of effect size vs frequency, combining rare CNV with common SNP
531 associations from the summary statistics of the PGC GWASs of ASD *¢, SCZ *7, BD *8, MDD *,
532 PTSD *°, and ADHD **. Curves for each group were fitted to an exponential model to provide
533 a unified representation of rare and common variants. (Fig. 2C).

534

535 Nearly all loci identified in this study show evidence of association with multiple diagnoses,
536 consistent with genes having pleiotropic effects on psychiatric traits *°. ASD is notable for
537 having many rare variants with large effects, all of which are in the positive direction

538 (associated with cases). By contrast, the genetic architecture of other diagnoses consists of
539 a mixture of positive (higher rate in cases) and negative associations (higher rate in

540 controls). The negative associations that were observed, however, do not represent

541 “protection” from all mental health conditions. Without exception, all CNV alleles that had a
542 negative association with one diagnosis also had a positive association with another in this
543 study (15q11.2 BP1-BP2 DEL, 22q11.2 A-D Dup, CSMD1 DEL) or in previous studies

544 (16p13.11 BP1-BP2 DUP?%, 22q11.2 B-D DUP*®), consistent with the same gene(s) having
545 divergent effects in different disorders.

546

547 Genes have dose-dependent effects on psychiatric traits

548 DELs and DUPs of the 22q11.21 A-D region show opposing associations with schizophrenia
549 (SCZ), with DELSs increasing susceptibility and DUPs decreasing it **, and both associations
550 reached genome-wide significance in this study. In addition, across all CNVs, the effect sizes
551 of reciprocal DELs and DUPs for SCZ were inversely correlated (Fig. 3A), consistent with a
552 linear dose-response relationship. A similar inverse correlation was observed for PTSD

553 (Fig. $6). Despite having numerous strong associations, this inverse relationship was not
554 evident for ASD where the DEL-DUP correlation was weakly positive (Fig. 3B). The

555 contrasting dose-response curves for SCZ and ASD highlight key differences between these
556 diagnostic categories. With respect to the opposing effects of DEL and DUP, the diagnostic
557 category of SCZ is generally associated with one or the other, whereas the diagnostic

558 category of ASD is often associated with both.

559

560 Analysis of the pairwise genetic correlations of diagnostic categories based on CNV effect
561 sizes (Table S9) shows a significant genetic correlation of SCZ and BD (Fig. 3C, Table S10,
562 p=3.32x10°). Weak correlations were also observed between these disorders and ADHD
563 (BD p-value=0.01, SCZ p-value=0.02) and between MDD and ASD (p=0.03). The genetic

564 correlations that we observe for CNVs are consistent with genetic correlations observed in
565 GWAS %%, The notable absence of correlation for SCZ and PTSD highlights how the
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566 dose-dependent relationships of genes is evident for both disorders (Fig. S6) despite

567 having different associations with specific loci.

568

569 While nearly all CNVs were associated with multiple diagnoses, this was not a reflection of
570 rare variant effects being highly non-specific. To the contrary, different alleles exhibited

571 different spectra of associations. Some loci show contrasting phenotype associations for
572 reciprocal DEL and DUP of the same genes including 15q11.2 BP1-BP2 (Fig. 3D), 16p11.2
573 BP4-BP5 (“proximal 16p”, Fig. 3E), 22q11.2 A-D (Fig. 3F) and 22q11.2 B-D (Fig. 3G).

574 Results are consistent with these CNVs having dose-dependent effects on psychiatric traits,
575 and within the 22q11.21 CNV, the dose-dependent effect may be driven by genes within the
576 B-D locus.
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579 Figure 3: Dose response curves show inverse correlation of effect sizes for deletion and duplication in (A) SCZ, but not (B)
580 ASD. (C) Pairwise genetic correlations of six disorders based on CNV associations, see Table $10. (D-G) Effect sizes of deletion
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581 and duplication are displayed for each diagnosis or (H-I) Effect sizes for 2 different genes across diagnoses under a single
582 association peak. *BH-FDR<10%; **Bonferroni correction for 50 tests (p<0.001); ***Genome-wide significance. Radar plots
583 for all loci are shown in Figure. S7 and summary statistics of effect sizes are in Table S9.

584

585 At other loci where breakpoints were not recurrent, we compared the effect sizes for

586 multiple genes within the same association peak. Within 8p23 for example, DELs of DLGAP2
587 have a strong association with ASD, while DELs of nearby CSMD1, a gene that has been

588 previously implicated in GWAS 2*° show contrasting associations with mood disorders BD
589 and MDD (Fig. 3H). Within 16p13.2, DUPs of USP7 are associated with ASD and MDD, while
590 the genome-wide significant association of DUPs with SCZ appears to be strongest for the
591 adjacent HAPSTRI1 gene (Fig. 31). Radar plots of effect sizes for DELs and DUPs across 6

592 diagnostic categories are shown for all loci tested (Fig. S7, Table S9).

593

594 Relationships of CNV genotype to phenotype that are observed here are attributable to the
595 dose-dependent effects of genes on pathways and cellular processes As described in our
596 companion paper %, the diagnostic categories of schizophrenia, autism and mood disorders
597 can be differentiated based on the gene-dosage effects on pathways stratified by cell-type
598 and brain region. In particular, 16p11.2 BP4-BP5 and 22q11.2 A-D are enriched for distinct
599 cellular processes that are characteristic of the DUP and DEL effects respectively that

600 contribute to SCZ. Thus the spectrum of clinical phenotypes observed for CNVs in Figure
601 3E-F is a reflection of how pathway effects are concentrated in neural cell types and cortical
602 brain regions °¢.

603

604 Recurrent mutations in large neural genes highlight novel associations

605 Without exception, all associations found in this study occurred in genomic regions that are
606 prone to high rates of structural mutation. Twelve loci consist of hot-spots for non-allelic
607 homologous recombination (NAHR)*’ that have recurrent breakpoints, in most cases span
608 multiple genes, and are given a cytoband-breakpoint label in Figure 2 (e.g. 1q21.1) to

609 reflect the CNV allele that was tested. The remaining six loci were common fragile sites

610 (CFS) where double strand breaks occur with high frequency and are distributed more

611 randomly. *® CFS loci are labeled with gene symbols to reflect the genes that were tested

612 (ASTNZ2, NRXN1, SMYD3, SHANK3, DLGAP2-CSMD1, USP7-HAPSTR1, Table S3). The fact that
613 all associations occur within CNV hotspots is consistent with the statistical power for rare
614 variants being greatest for the loci with the highest mutation rates *°.

615

616 All three single-gene associations consist of fragile sites within long genes that have

617 functions related to neuronal development *%. Long genes are prone to replication stress,
618 and consequently, genome instability ®°, and tend to co-localize with TAD boundaries®'.

619 These include positive associations of NRXN1 DELs in SCZ (Fig 4A), ASTNZ2 DELs in XD (Fig.
620 4B) and SMYD3 DUPs in SCZ (Fig 4C). CNVs in these genes have a characteristic fragile-site
621 signature where the breakpoints, lengths and functional consequences of the CNVs are

622 variable. When we stratified CNVs by predicted functional consequence, the associations of
623 NRXN1 and ASTNZ DELs were greatest for loss-of-function (LoF) variants that are predicted
624 to result in truncation of the protein (Table S11). The association of SMYD3 DUPs was

625 driven by variants that span at least one full length transcript of the gene, consistent with a
626 gain of function effect (Table S11).
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629 Figure 4: CNV associations implicate large neural genes within common fragile sites. Three genome-wide significant
630 loci that overlap fragile sites and TAD boundaries from Dorsolateral Prefrontal Cortex (DLPFC TADs) are shown for A) NRXN1
631 B) ASTNZ2 and C) SMYD3. Association tests (bottom) were stratified by predicted functional consequence: loss of function
632 (LOF), In frame, and intronic (Intron). Duplications spanning a full length isoform (Full Iso) or partially spanning an isoform
633 (Part Iso), and intronic (Intron). Table $11.

634

635 Recurrent duplications of SMYD3 are associated with schizophrenia

636 The association of the gene SET and MYND domain containing 3 (SMYD3) with SCZ appears
637 to be driven by DUPs of full length transcripts, suggesting that the causal variants increase
638 the number of functional copies of SMYD3. However, gene duplications detected by

639 microarray can have hidden complexity that, in some cases, results in loss rather than gain
640 of function®. To clarify the structure and functional consequence of SMYD3 DUPs, DNA

641 samples from 3 carriers with DUPs spanning the short isoform of SMYD3 were obtained

642 from DNA samples available to our group through UCSD and collaborators at Trinity College
643 Dublin, and HiFi long-read whole genome sequencing was performed on each sample using
644 the Pacific Biosciences Revio platform to a total coverage of >20X (Fig. 5A, Table S12 for
645 coverage and QC). HiFi long reads were aligned to both the GRCH38 and CHM13

646 assemblies using PBMM?2, and SVs were called using Sniffles and LUMPY. In each genome,
647 DUP breakpoints were identified and contigs were assembled from breakpoint-spanning
648 reads using Flye v2.9.2. Assembled breakpoints revealed that each SV had a distinct

649 structure. Subject 1 carried a tandem duplication of 666,289 bp spanning the short isoform
650 of SMYD3 (ENST00000403792.7, Fig 5B). Subject 2 carried a 516,050 bp non-tandem

651 duplication of ENST00000403792.7 that was inserted into the first intron of OR2G6 (Fig
652 5C). Subject 3 carried a tandem duplication of 1.6 Mb spanning >10 genes including the full
653 length of the SMYD3 gene (Fig 5D). Thus, all DUPs appear to result in an increased copy

654 number of at least one full length isoform of SMYD3.
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655

656 All breakpoint positions were non-recurrent (unique to each subject). In two cases, tandem
657 duplications resulted in the partial duplication and recombination of genes near the

658 breakpoint junction. However, the fused transcript pairs CNST/SMYD3 (Fig 5B) and

659 KIF26B/ZNF496 (Fig. 5D) were on opposite strands. In patient 3, the SMYD3 gene is

660 inserted within OR2G6 (Fig 5C) in the same orientation, and is predicted to fuse exons 1-5
661 of the long isoform of SMYD3 with the full open reading frame of OR2G6. Thus, in addition
662 to duplicating the short isoform of SMYD3, the SV has the potential to cause ectopic

663 expression of an olfactory receptor from the SMYD3 promoter.
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666 Figure 5: Structures of SMYD3 duplications resolved by HiFi long read WGS

667 (A) The association peak spans exons 1-3 of the SMYD3 gene while the CNVs themselves have variable
668 breakpoints that duplicate different nearby genes. Pacbio sequencing was performed on 3 cases with the SMYD3
669 Dup and the corresponding microarray CNV calls are shown (green) on the SCZ DUPs track. (B) The first sample
670 is a tandem duplication that spans the full short isoform of SMYD3. The duplicated portion truncates the long
671 isoform of SMYD3 on the proximal side as well as the CNST gene on the distal side. The inserted sequence has
672 portions of both CNST and SMYD3 sitting flush with each other. (C) The next sample is an inserted DUP that
673 spans the full short isoform of SMYD3. It does not include any extra genes and is inserted next to the olfactory
674 receptor genes with a small deletion of 393bp. (D) The last sample is another tandem duplication that spans all
675 isoforms of SMYD3. It is a longer DUP that includes many genes on the distal side of SMYD3. This DUP cuts
676 KIF26B on the proximal side of SMYD3 and ZNF496 on the distal side and the resulting genome in the sample has
677 both genes sitting flush with each other. Table $12.

678

679 Discussion

680 In a comparative study of rare CNVs across six psychiatric diagnoses (ASD, ADHD, SCZ, BD,
681 MDD, and PTSD), rare variant associations elucidate key aspects of the genetic architecture.
682 This study identified 35 genome-wide significant associations at 18 different CNV regions,
683 providing a map of loci where gain or loss of gene dosage influences psychiatric traits. This
684 represents a 4-fold increase in the number of CNV associations to date that meet

685 genome-wide significance in the PGC *°.

686

687 Rare CNVs accounted for 0.6-2% of the variance in case status across 6 diagnostic

688 categories, corresponding to 0.9-3% of liability-scale heritability. This contribution is

689 independent of the heritability explained by common variants. ASD is notable for having
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many rare variants with large effects, all of which are in the positive direction. For other
diagnostic categories, such as SCZ, BD and MDD (Fig. 2C), the contribution of rare variants
consisted of a mixture of risk alleles (more frequent in cases) and protective alleles (more
frequent in controls). Hence, the genome-wide burden of rare variants in a categorical
diagnosis is not a particularly accurate measure of their influence. The collective frequency
of rare CNVs in some disorders, such as ADHD and PTSD, is similar to the frequency in
controls but CNVs still account for approximately 1% of heritability.

Importantly, the negative associations that we observe do not represent broad “protection”
from mental health conditions. Without exception, all CNV alleles that had an effect size
that was negative for one diagnosis have a positive association with another in this study
(15q11.2 BP1-BP2 DEL, 22q11.2 A-D DUP, CSMD1 DEL) or in previous studies
(16p13.11BP1-BP2 DUP®% 22q11.2 B-D DUP>?), highlighting how the same CNV allele can
have divergent, sometimes opposing, associations with different psychiatric traits.

Furthermore, different CNV alleles have different spectra of associations across 6
diagnoses. These contrasts are particularly evident for reciprocal DEL and DUP of the same
genes (Fig. 3). Previous studies have shown that CNVs have “mirror” dose-dependent
effects on a variety of complex traits %, including brain structure ® and cognition 5%,
Here we show that this principle also applies to psychosis and other psychiatric traits.
Reciprocal DELs and DUPs of 22q11.21 show opposing positive and negative associations
with schizophrenia (SCZ) respectively **. Furthermore, across all loci, there was an inverse
correlation of effect sizes for reciprocal CNVs in SCZ and PTSD, suggesting that CNVs have a
dose-dependent relationship with some diagnoses. ASD, by contrast, was characterized by a
neutral (weakly positive) dose-response curve. Thus, with respect to the opposing effects of
DEL and DUP, SCZ is generally associated with only one of the two extremes, but both often
fall under the diagnostic umbrella of ASD. MDD showed a similarly neutral dose-response
curve (Fig. S6), and ASD and MDD exhibited significant genetic correlation (Fig. 3C). These
findings underscore how mental health traits related to social behavior and mood are
characterized by substantial clinical and genetic heterogeneity ®. Deeper clinical
characterization of dimensional cognitive phenotypes associated with reciprocal CNVs
could better elucidate relationships of gene dosage with quantitative traits and could help
to dissect the clinical and genetic heterogeneity within these diagnostic categories 7.

Multiple novel loci were identified in SCZ (SMYD3, USP7-HAPSTR1) and in the combined XD
sample (ASTNZ2). SET and MYND domain-containing protein 3 (SMYD23) is a histone
methyltransferase expressed predominantly in the brain ® with a function in chromatin
regulation ®°. While it’s role in regulation of neural function is not known, a recent study has
shown that SMYD3 expression is elevated in the prefrontal cortex of patients with
Alzheimer’s disease, and a SMYD3 inhibitor rescues synaptic and cognitive deficits in a
mouse model of tauopathies 7°. A variety of inhibitors of SMYD3 have been developed in
oncology "*. Thus, validation of increased SMYD3 dosage as a risk factor for psychosis could
offer a potential avenue for development of new therapeutics. DUPs that span USP7 and
HAPSTR1 were associated with SCZ in this study. More detailed characterization found
evidence that the USP7 gene was associated with ASD and MDD, consistent with recurrent
de novo DUPs of this region previously reported in ASD 72 Ubiquitin-specific protease 7
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736 (USP7) is a deubiquitinating enzyme that is highly expressed in neuronal cells in cerebrum,
737 cerebellum, and hippocampus’. USP7 influences neuronal development and function

738 through neuronal migration 7, dendritic spine morphogenesis’ and neuroinflammation.”®
739 The SCZ association with this locus was strongest for the adjacent gene HAPSTR1 (Table
740 §9), which encodes a regulator of stress response pathways 77, which have been implicated
741 in the etiology of SCZ 7®. DELs of ASTNZ2 were significant in the combined XD cases

742 suggesting these confer risk for a broad range of psychiatric disorders. This finding is

743 consistent with previous reports of ASTN2 DELs in small samples of SCZ, BD and ASD *"7°,
744 ASTNZ is predominantly expressed in the brain and plays a role in neuronal migration
745 and synaptic function . Common SNPs within CSMD15%? and NRXN1¢ are associated with
746 SCZ, and ASTNZ2 has been implicated in GWAS of MDD®? and BD®. Thus, a convergence of
747 evidence from both rare and common variants implicate the same genes. Synaptic

748 neurotransmission, regulation of synaptic plasticity, chromatin and post-transcriptional
749 regulation are common threads between studies of CNVs, whole exome sequencing ° and
750 GWAS ®. A more detailed characterization of the molecular pathways, cell types and brain

751 regions that are implicated by CNV associations is described in our companion paper *°.

752

753 A majority of the CNVs that reached genome-wide significance in this study are variants
754 that are routinely reported in clinical microarray (CMA) testing, and clinically-reportable
755 CNVs that did not reach genome-wide significance in this study explained another 0.2-0.3%
756 of the variance across all six diagnoses (see Table S5). Yet very few of the subjects enrolled
757 in this study have been offered genetic testing as part of their clinical care. CMA has

758 historically been restricted to pediatric populations for the evaluation of congenital

759 malformations®, intellectual disability and autism ¥, and insurance providers approve it
760 only for these indications. Consequently, the clinical features of CNVs that are described in
761 the literature reflect this bias, and may not be representative of clinical presentations of
762 CNV carriers in the broader adult population 2%, As large-scale studies like this one begin
763 to uncover associations between CNVs and adult-onset health conditions, the effectiveness
764 of early tailored interventions can be evaluated, clinical guidelines can be revised, and the
765 need for genetic counseling in subjects carrying these CNVs can be assessed. When

766 considering all clinically-reportable variants that influence mental health, the overall

767 difference in diagnostic yield between different clinical populations is relatively small (Fig.
768 2A). If the rationale for ordering a clinical genetic test is the utility of genetic information
769 for lifelong clinical management and genetic counseling of individuals, then the utility of
770 CMA is not limited to the pediatric developmental clinic.

771
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793 Data and code Availability

794 A WDL workflow containing all steps of CNV calling, QC and CNV-GWAS and meta-analysis
795 code is under construction and will be released on the PGC CNV Github in conjunction with
796 this publication (https://github.com/orgs/psychiatric-genomics-consortium/teams/cnv).
797

798 Meta-analysis of summary statistics for 6 diagnoses and the combined XD sample will be
799 released through the PGC downloads page

8o https://pgc.unc.edu/for-researchers/download-results/

801

802 Raw genotype and intensity files are available on subset of the cohort

803 PGC dbGAP datasets

804 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/collection.cgi?study id=phs001254.v
gos 1.p1

806

807 Simons Foundation Autism Research Initiative SFARI (SSC and SPARK)

g8 https://base.sfari.org/

809

810 Supplementary Materials and Methods

811

812 Methods

813

814 GWAS datasets of the PGC

815 The CNV subgroup of the Psychiatric Genomics Consortium (PGC) works in collaboration
816 with principal investigators from many institutions to obtain large sample sizes of
817 microarray data and analyze them using a centralized pipeline. We acquired microarray
g18 intensity files from GWAS for a total of 574,965 samples that included data from 6
819 psychiatric conditions (Table S1). These samples were genotyped on 25 platforms across 4
820 genome builds. Data from [llumina was collected as either raw intensity data (IDAT) files or
821 final report files while data from Affymetrix was collected as CEL files. To harmonize data,
822 probes for newly acquired datasets were lifted over to GRCH38 for CNV calling while
823 previously called CNVs were lifted over to GRCH38. Samples were genotyped on either
824 [llumina or Affymetrix array.

825

826 Copy number variant calling
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827 For samples that were provided as IDAT files, the I[llumina command line version of
828 Genome Studio was used in conjunction with platform-specific manifest and cluster files to
829 produce genotype call (GTC) files. Relevant features were extracted from GTC files to obtain
830 final report files with probes, genotypes, Log R Ratio (LRR), and B Allele Frequency (BAF)
831 for each sample. For samples that were not mapped to GRCH38, probe genome positions
832 were converted to hg38 using the LiftOver tool. Samples within each platform were
833 grouped into batches by plate. For Affymetrix 6.0 arrays, CNVs were called using four
834 methods: PennCNV, iPattern, CScore, and Birdsuite. For Affymetrix 5.0 and 500K arrays,
835 CNVs were called using two methods that were compatible with this platform: PennCNV
836 and Birdsuite. For Axiom arrays, CNVs were called using PennCNV and QuantiSNP. For all
837 [llumina arrays, CNVs were called using two methods: PennCNV and iPattern. The
838 consensus of CNV calls from multiple callers was created by merging CNVs at the sample
839 level and retaining CNVs that were called by at least 2 methods.

840

g41 Quality control of samples and CNVs

842 Sample QC. Quality control (QC) was performed first at the sample level according to
843 methods from our previous CNV GWAS of schizophrenia . For Illumina arrays, LRR
844 standard deviation, BAF standard deviation, and GC waviness factor were extracted from
845 PennCNV log files (Fig. S1). Samples were retained if each of the measures were within 3
846 SD of the median. Affymetrix arrays used MAPD and waviness-sd parameters from affy
847 power tools. The proportion of the chromosome that was tagged as a CNV was calculated
848 and samples were excluded if >10% of the chromosome was marked as a CNV region to
849 filter possible aneuploidies. Distribution of QC metrics differ by genotyping platform (Fig.
850 S1), which provides a rationale for performing meta-analysis of summary statistics by
851 platform.

852

853 CNV QC. A basic set of QC filters were applied to the call set, and subsequent filtering was
854 performed at the probe level. CNVs that were called with different CNV types from different
855 callers were excluded. Large CNVs that were fragmented were merged if one of the calling
856 methods detected a CNV spanning the gap. CNVs < 10kb in length or contained < 10 probes
857 were excluded. CNV calls were removed if they spanned the centromere or telomere (100kb
858 from end of chromosome) or had >50% overlap with segmental duplications,
859 immunoglobulin, or T cell receptor. Because the normalization of microarray intensity data
ge0 is performed within a batch (typically a 96-well plate), CNV calling is optimal for rare CNVs
ge1 that show distinguishable deviation in probe intensities relative to other samples within a
862 plate. For common copy number polymorphisms (frequencies >10%), there is high variance
863 in probe intensities within plates as well as sampling variance in the distribution of copy
ge4 numbers. For this reason, CNV calling accuracy is suboptimal for common CNVs.
865 Furthermore, a majority of common CNVs are tagged by adjacent SNPs *° and are already
ge6 captured by GWAS. Thus our final call set was restricted to CNVs with < 10% frequency
867 within-platform or across all platforms.

868

869 Probe QC. Our CNV-level QC applied a liberal threshold of 10% frequency to make certain
870 that pathogenic CNVs near the rare CNV frequency boundary were kept in our analysis. CNV
871 frequency was then calculated for each probe and probes with rare CNVs were kept if they
872 contained < 2% CNV frequency within-platform and within-dataset. Additionally, probes
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873 were removed if they were heavily filtered by CNV QC (filtered CNVs > 20).
874 Platform-specific and dataset-specific CNVs arose from the differing probe content of the
875 many genotyping arrays. We applied probe-level specificity filters to prevent these CNVs
876 from causing spurious associations in our results as described in detail in the Methods.

877

878 Ancestry principal components and ancestry partitioning

879 We extracted a subset of SNPs with < 1% missingness across all platforms (12,185 SNPs)
880 and performed a principal component analysis using the flashPCA software . In order to
881 genetically infer the ancestry of each individual, we used the SNPweights software *° on the
882 same subset of SNPs to calculate % ancestry based on a reference panel containing 6
883 different populations (751 EUR, 687 EAS, 630 SAS, 568 AFR, 41 AMR, 22 OCE). Samples
884 were categorized into 5 large homogeneous groupings based on the following criteria used
885 in a previous study °° (Table S2, Fig. S2): EUR: subjects with EUR = 90%, AFR/AFAM:
886 subjects with EUR < 90% & AFR 2 5% & EAS/SAS/AMR/OCE < 5%, ASN/ASAM: subjects
887 with EUR < 90% & (EAS = 5% or SAS = 5%) & AFR/AMR/OCE < 5%, LAT: subjects with EUR
888 < 90% & AMR = 5% & EAS/SAS/AFR/OCE < 5%, NAT: subjects with EUR < 90% & AMR =
889 60% & EAS < 20% & SAS < 15% & AFR/OCE < 5%, MIX: Uncategorized subjects. The LAT
890 and NAT groups were combined into a single group with the overall LAT label.

891

892 Statistics for CNV genome wide association

893 The association of deletions or duplications with case status was tested by logistic
894 regression, controlling for confounding variables such as sex, genotyping platform, and 10
895 ancestry principal components (PCs) derived from SNP genotypes (Model 1). A logistic
896 regression using only the covariates was used as a null model (Null Model 1). Datasets
897 containing families used a conditional logistic regression with an extra covariate
898 corresponding to the family ID (Model 2, Null Model 2). A chi-square test was then
899 performed on the 2 models to obtain a p-value. A meta-analysis weighted by sample size
900 (N-weighted) was applied across all platforms using METAL *. Effective sample size (Neg)
901 was used to determine the contribution of each platform. Associations were conducted at
902 the breakpoint level since our sample size provided enough CNVs to obtain sufficient
903 power. A breakpoint was included in the analysis if it contained at least 12 CNVs.

904

905 Model 1: af f ~CNV + sex + PCs
906 Null Model 1: aff ~sex + PCs

9207

908 Model 2: aff ~CNV + sex + PCs + strata(FID)
909 Null Model 2: aff ~ sex + PCs + strata(FID)

910
4
911 N =
eff (1/Ncases)+(1/Ncontrols)
912

913 Addressing statistical confounders in large-scale genome-wide meta-analysis of rare
914 CNVs.

915 In our experience, the key statistical confounders that must be addressed when performing
916 a genome-wide meta-analysis of rare CNVs across many cohorts are (1) heterogeneity in
917 CNV detection due to SNP genotyping platform and (2) The sparse data (zero cell) problem
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918 °1, where some loci produce summary statistics with very high standard errors in a subset
919 of the cohort due to zero counts in cases or controls.

920

921 Heterogeneity of SNP genotyping platforms

922 Population stratification, a common confounder in genome-wide association studies °* can
923 be addressed in studies of rare variants by controlling for ancestry principal components
924 derived from SNP genotypes *°. In large-scale collaborative studies of rare variants,
925 however, there is another major confounder that must be addressed: differences in variant
926 frequency between cohorts that is attributable to differences in the technology platforms
927 used for rare variant detection.

928

929 “Platform stratification” is a confound that is conceptually similar to population
930 stratification but is tied to genotyping/sequencing platform instead of ancestry. In
931 large-scale collaborative studies of CNVs, where datasets from multiple cohorts are
932 combined, differences in CNV frequencies between datasets can arise due to differences in
933 CNV detection by the genotyping platforms that are used with each cohort. For instance,
934 due to regional differences in probe coverage, a given CNV may be detected with greater
935 sensitivity by platform A than by platform B. When two datasets genotyped with platforms
936 A and B are combined, a false-positive association with the CNV can occur, particularly
937 when the relative proportions of cases and controls differ between datasets (Fig S3). Thus
938 “platform stratification” can artificially produce differences in CNV frequency between
939 cases and controls.

940

941 To identify signals that are potentially attributable to platform stratification, we derived a
942 measure for the platform or dataset specificity of CNV counts for a given probe. CNV
943 frequency is calculated within-platform and within-dataset (Equation 1). A weighted
944 deviance score (WDS) is then calculated for each platform/dataset (Equation 2) and a
945 specificity index (SI) is derived by taking the maximum of the WDS across
946 platforms/datasets (Equation 3). When calculating the SI score, all counts were used to
947 calculate E; in Equation 2, but only platforms/datasets with >2 CNVs were included when
948 calculating the maximum in Equation 3. This prevented inaccurate SI scores being driven by
949 single counts in smaller sample sizes. A threshold value of SI>0.2 was chosen for platform
950 and SI>0.6 was chosen for dataset to flag probes that display platform stratification.

951

(o
952 Equation 1: CNV Frequencyl_ = Tl

i i

954 Equation 3: SI = max(WDSi)

953 Equation 2: WDSL, =

955 El, = pNi; Nl,: # of samples onplatformi;p = %
956 Ci: # of CNV counts onplatformi; Ei: Expected CNV counts on platform i
957 N: # of total samples; C: # of total CNV counts

958
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959 When association tests are performed across the combined SCZ sample in a single logistic
960 regression model, the associations that arise cluster into groups based on the SI measure.
961 Most associations in SCZ, including all well established “known” associations, are enriched
962 among probes that have low SI. A second small cluster of probes can be seen with high SI
963 (Fig. S3A). In a manhattan plot, these appear as distinct association peaks that persist even
964 when platform is included as a covariate in the logistic regression model (Fig. S3C). These
965 spurious signals are addressed by a meta-analysis of CNV summary statistics by platform as
966 described below.

967

968 Sparse data problem

969 A major confounder in genome-wide association studies of rare variants is attributable to
970 sparse counts of rare variants within subsets of the combined sample, where there can be
971 zero values in cases and controls distributed across the cohort °!. These zero values can
972 lead to greatly inflated standard error estimates for specific loci in a subset of the summary
973 statistics used in the meta-analysis. When meta-analysis was weighted by standard error,
974 tests that yielded high standard error estimates (Fig S3B, SEM>1) contributed to many
975 spurious associations throughout the genome (Fig. S3D).

976

977 Sample size-weighted meta-analysis of samples grouped by genotyping platform

978 Platform heterogeneity was adequately addressed when (1) samples were first grouped by
979 genotyping platform, and meta-analysis was performed across platforms and (2)
980 meta-analysis was weighted by the samples sizes of each platform instead of standard
981 error. Following this workflow, the combined association data does not show strong signals
982 that are driven by probes subject to platform heterogeneity or by probes that show high SE
983 estimates in the combined sample (Fig. S3E).

984

985 Estimation of multiple test correction

986 The p-value threshold that gives a family-wise error rate (FWER) of 0.05 was calculated as
987 an adjusted Bonferroni correction. The total number of tests was replaced with the total
988 number of independent tests (Equation 4). Independent tests were counted after removing
989 tests with >4% Jaccard index. The Jaccard index threshold was chosen by comparing
990 multiple test corrections based on permutations in the SCZ cohort on chr1 with Bonferroni
991 corrections at different Jaccard index thresholds (Fig. $4).

992

0.05
# of independent tests

993 Equation 4: Genome wide significant threshold (p value) =

994

995 Investigating the Pleiotropic effects of CNVs across 6 diagnostic categories

996 To investigate the full range of psychiatric conditions associated with each locus, we performed a
997 more detailed characterization of the effect sizes of specific CNV alleles across the 6 diagnostic
998 categories. For each locus with recurrent (NAHR) breakpoints (1q21.1-21.2, 3q29, 7q11.23,
999 15q11.2, 15q11.2-13.1, 15q13.1, 15q13.3, 16p13.11, 16p12.2, 16p11.2, 22q11.21), we identified
1000 all of the distinct alleles within each locus and genotyped each individually. For loci with
1001 non-recurrent (randomly distributed) breakpoints (ASTN2, NRXN1, SMYD3, USP7-HAPSTRI,
1002 8p23, 22q13.3) we tested individual genes. Altogether, across the 18 regions listed above,
1003 there were 43 distinct loci, and DEL and DUP were tested for each (86 alleles, Table S9).
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1004 Only tests with a count of at least 12 in the combined cases and controls were considered,
1005 thus ~50 tests are reported for each diagnostic category.

1006

1007 Annotating which CNV loci are recurrent (NAHR) or non-recurrent, and annotating
1008 clinically reportable CNVs

1009 All of the associations reported in this study were “CNV hotspots”, i.e. loci that are prone to
1010 genomic instability. A majority were “NAHR” loci where recurrent de novo CNVs occur by
1011 non-allelic homologous recombination (NAHR) and de novo mutation events produce deletions
1012 and duplications with similar breakpoints °™**. The remaining loci consisted of “fragile sites”
1013 where frequent double strand breaks give rise to many non-recurrent deletions and duplications
1014 that have breakpoints that are more randomly distributed across the locus. Table S7 provides a
1015 guide to which CNV loci are NAHR or are non-recurrent. Where applicable, we also include
1016 links to clinical guidelines for CNVs that are recognized as pathogenic and reported in clinical
1017 genetic testing.

1018

1019 Table S7 was prepared as follows. An initial “morbidity map” of the genome was created by
1020 Cooper et al. **, identifying NAHR-mediated regions and characterizing their associations using
1021 large clinical microarray datasets from pediatric developmental disorder cases. This study has
1022 since become a standard reference list of known recurrent CNVs used by our group and others *.
1023 We created an updated version of the morbidity map from the union of loci from Cooper et al.**,
1024 Kendall et al*!, and this study. Breakpoints were refined to facilitate genotyping of distinct CNV
1025 alleles. A majority of the loci in the morbidity map are known CNVs that are routinely reported
1026 in clinical genetic testing. Where appropriate, we provide a URL link to clinical guidelines from
1027 Gene Reviews”, Clin Gen’®, OMIM ?7 or other databases. In addition, we label the CNV alleles
1028 corresponding to “GWS loci” and “Other Clinically-Reportable CNVs” in Figure 2A.

1029

1030

1031 Calling genotypes for each locus

1032 NAHR CNVs were genotyped based on CNV calls with >50% reciprocal overlap with the
1033 locus. For complex loci with several breakpoints and multiple subregions (BP1-BP2,
1034 BP2-BP3, BP3-BP4...), such as 15q11-13 and 22q11, each subregion was genotyped using
1035 one-way overlap with CNVs, and specific alleles were called based on the subregions that
1036 were spanned by each CNV. For example, a DEL that spans 22q11.21 A-B, B-C, and C-D
1037 would be called “22q11.2 A-D”.

1038

1039 For single genes, we tested counts for predicted loss of function (LoF) variants (DELs that
1040 intersect with exons) and for predicted gain of function (DUPs that span at least one
1041 full-length isoform. For single gene loci we also compared associations for intronic DELs
1042 and DELs predicted to cause LoF or an in-frame deletion (Fig. 4).

1043

1044 Testing association of genome-wide CNV burden

1045 The CNV burden of deletions and duplications was tested by logistic regression, controlling
1046 for confounding variables such as sex, genotyping platform, and 10 ancestry principal
1047 components (PCs) derived from SNP genotypes. CNV burden was calculated for each
1048 platform to control for differences in probe coverage between different cohorts.
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1049 SE-weighted meta-analysis was used to estimate CNV burden using METAL *° since
1050 N-weighted meta-analysis does not provide effect sizes.

1051

1052 For analysis of genome-wide CNV burden, the number of base pairs that overlapped a CNV
1053 genome-wide was used as the independent variable (Burden Model 1) and CNV burden
1054 was calculated by comparing it to a model that only contained covariates (Null Model).
1055 CNV burden was also calculated for CNVs > 1Mb in size with the same approach (Burden
1056 Model 2, Null Model). Genes were partitioned into two tiers according to their pLI score:
1057 high pLI (T1; pLI>0.5) and low pLI (T2; pLI <0.5). CNV burden was calculated for all genes
1058 (Burden Model 3A, Gene Null Model), Tier 1 genes (Burden Model 3B, Gene Null
1059 Model), and Tier 2 genes (Burden Model 3C, Gene Null Model) while controlling for the
1060 out-of-category genome-wide burden defined as the number of base pairs that do not
1061 overlap with the gene category being tested. CNV burden was calculated for the GWS loci
1062 (Burden Model 4A, Null Model), clinically-reportable CNVs (Burden Model 4B, Null
1063 Model), and GWS loci + clinically-reportable CNVs (Burden Model 4C, Null Model)
1064 categories by counting the number of CNVs an individual carried in each category.

1065

1066 Burden Model 1: aff ~ # of base pairs overlapping CNV + sex + PCs

1067 Burden Model 2: af f ~ # of base pairs overlapping CNV > 1Mb + sex + PCs

1068 Burden Model 3A: af f ~ # of base pairs overlapping genes and CNV + 00C + sex + PCs
1069 Burden Model 3B: aff ~ # of base pairs overlapping T1 genes and CNV + 00C + sex + PCs
1070 Burden Model 3C: aff ~ # of base pairs overlapping T2 genes and CNV + 00C + sex + PCs
1071 Burden Model 4A: aff ~ # of CNVs overlapping GWS loci + sex + PCs

1072 Burden Model 4B: aff ~ # of CNVs overlapping clinically reportable CNVs + sex + PCs
1073 Burden Model 4C: aff ~ # of CNVs overlapping GWS & clinically reportable CNVs + sex + PCs
1074 Null Model: aff ~ sex + PCs

1075 Gene Null Model: aff ~00C + sex + PCs

1076

1077 Estimation of CNV frequencies in each diagnostic category

1078 As mentioned above, it is necessary to control for genotyping platform when estimating the
1079 relative frequencies of CNVs in cases and controls. Thus, the CNV frequencies in cases for each
1080 category in Fig. 2A were derived from the odds ratio estimates from meta-analysis of CNV
1081 counts. We use the observed control frequency and the odds ratio from meta-analysis of CNV
1082 burden across platforms (Burden Model 4, Null Model, Table S6) to produce an accurate
1083 estimate of CNV case frequency (Equation 5).

1084

E . 5 _ OR*freqml
1085 Equation 5: freqcase = T4 (freq_+(0R-1))

1086 freqm ; CNV frequency in the combined control sample

1087

1088 Total variance explained by CNVs

1089 The proportion of variance explained by CNVs was determined by calculating Nagelkerke’s
1090 R? between a CNV model and a null model. Nagelkerke’s R* was calculated for each platform
1091 separately to control for differences in probe coverage between different cohorts.
1092 Bootstrapping was implemented to estimate standard errors for the R? estimate on each
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1093 platform and summary statistics were combined through meta-analysis using the metafor
1094 package in R %,

1095

1096 Nagelkerke’s R* was calculated for genome-wide burden of length, loci that were
1097 genome-wide significant in our study, clinically-reportable CNVs, and the combination of all
1098 categories. The R* estimate for genome-wide burden of length was tested by adding the
1099 length of all DELs and DUPs separately for each individual and comparing a logistic
1100 regression model of aggregate length and covariates (Burden Model) against a model with
1101 only covariates (Null Model). To estimate R* for the GWS loci and clinically-reportable
1102 CNVs, a genotype matrix was created for each category (separate genotypes for DEL and
1103 DUP) and a logistic regression model with each locus genotype as a separate variable plus
1104 covariates (Genotype Model) was compared against a model with only covariates (Null
1105 Model). The genotype matrix for GWS loci and clinically-reportable CNVs was then
1106 combined and supplemented with the genome-wide burden annotations (DEL and DUP) to
1107 estimate the R* for the combined genotype and genome-wide burden using the same
1108 method (Combined model, Null Model).

1109

1110 Burden Model: af f ~ # of base pairs overlapping DEL + # of base pairs overlapping DUP
1111 + sex + PCs

1112 Genotype Model: af f ~ CNVgenotype + sex + PCs

1113 Combined Model: af f ~ CNVgenotype + # of base pairs overlapping DEL

1114 + # of base pairs overlapping DUP + sex + PCs

1115 Null Model: af f ~ sex + PCs

1116

1117 Estimating effect sizes for CNVs at 18 loci across 6 diagnostic categories

1118 Effect size estimates from N-weighted meta-analysis are scaled as a Z-score by default. To
1119 derive estimates of the odds ratio for each CNV, a mega-analysis was performed on the

1120 combined platforms, and odds ratio estimates were added to Table S9. For associations
1121 with high standard error (SEM>20) in the mega-analysis (due to zero counts in cases or
1122 controls), we applied a continuity correction to the effect size estimate similar to the

1123 Haldane-Anscombe correction for estimating odds ratios when there is a zero count in a
1124 contingency table °° '°°, To calculate the odds ratio of a CNV that contains a zero count in
1125 cases or controls, we added a count of 1 to each cell in the contingency table by randomly
1126 sampling 4 subjects from the cohort with replacement (duplicating 2 cases and 2 controls),
1127 then the appropriate genotypes were assigned to each (1 case with CNV, 1 case no CNV, 1
1128 control with CNV, 1 control no CNV), and the four subjects were added to the sample.

1129

1130

1131 Assembling HiFi reads from samples carrying the SMYD3 duplication

1132 HiFi long-read whole genome sequencing was performed on 3 samples using the PacBio
1133 Revio platform. Minimap2 v2.24 was used for alignment, DeepVariant v1.5 for variant
1134 calling, WhatsHap v2.0 for phasing and haplotagging reads, and Flye v2.9.2 for assembly.
1135

1136 Supplemental Material

1137
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1142 Figure S1: QC metrics across different platforms in the current PGC CNV study. For each platform, we show the
1143 distribution of each QC metric at the sample level including A) The mean Log R Ratio (LRR_MEAN), B) The mean B Allele
1144 Frequency (BAF_MEAN), C) Waviness Factor (WF) D) Log R Ratio standard deviation (LRR_SD), E) B Allele Frequency

1145 standard deviation (BAF_SD), and F) GC waviness factor (GCWF). LRR_SD measures the variability of LRR across a sample

0.3

1146 while BAF_SD measures the variability of BAF across a sample. Smaller standard deviation values lead to more accurate CNV

1147 calling. WF measures the total amount of fluctuation in signal intensity in a sample while GCWF measures the amount of

1148 signal intensity fluctuation explained by local GC content.

1149
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1151 Figure S2: Sample groupings for all individuals in the current PGC CNV study.
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1154 Figure S3: Platform/dataset specificity index filter and CNV GWAS for SCZ shows platform-specific spurious
1155 associations. -logy(pvalue) from the SCZ CNV GWAS vs. A) specificity index for platform and B) META-SE standard error are
1156 shown. Deletions and duplications are both included. Previously identified SCZ loci are shown in blue and the rest of the
1157 breakpoints are shown in black. The known loci cluster near lower specificity values and low SE while the spurious
1158 associations that need to be filtered cluster at high SI values and high SE. A threshold of 0.6 SI was chosen to filter out CNVs
1159 coming from a single platform and 0.2 SI for dataset. N-weighted meta-analysis was chosen instead of a threshold for
1160 META-SE. C) Mega-analysis CNV GWAS in SCZ controlling for genotyping platform as a covariate does not properly correct for
1161 genotyping platform. D) CNV GWAS using SE-weighted meta-analysis across platforms does not properly account for
1162 case/control imbalances in different platforms and produces spurious associations with high standard error. E) CNV GWAS
1163 using N-weighted meta-analysis correctly accounts for differences in genotyping platform and case/control imbalances.
1164 Breakpoints filtered by the platform/dataset specificity filter are shown in red. Breakpoints with high standard error are
1165 shown in magenta. Black are all retained breakpoints.
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1167 Figure S4: P-value thresholds for different values of Jaccard Index. The red line shows the p-value (6.14x10*) that gives
1168 an FWER of 0.05 based on permutations in the SCZ cohort on chr1.
1169
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1170

1171 Figure S5: Effect sizes of rare CNVs differ by diagnosis, genes, and regions. A) A CNV burden test for all base pairs was
1172 performed for each diagnosis. Rare CNVs contribute to risk in most psychiatric conditions at different magnitudes. B) A CNV
1173 burden test was performed for large CNVs with length >1Mb. Results are very similar to all CNVs (Panel A). C) Genes were
1174 stratified by their probability of loss of function intolerance (pLI). Tier 1 Genes are defined as pLI > 0.5 and Tier 2 genes have
1175 pLl < 0.5. CNVs overlapping Tier 1 genes are enriched in cases with the largest effects in ASD and SCZ. D) CNV burden was
1176 tested within the genome-wide significant (GWS) loci identified in this study, clinically-reportable CNVs that were not

1177 genome-wide significant in this study (Other loci), and in a combined group (GWS+Other loci) Table S6.
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1180 Figure S6: Dose-dependent effects of rare CNVs in different psychiatric traits. Effect sizes for duplications and deletions
1181 show a significant inverse dosage relationship for A) SCZ and B) PTSD. Dosage relationship curves are also shown for C) BD

1182 D) MDD E) ADHD and F) ASD. Table S9.
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1185 Figure S7: Effect Size across 6 diagnoses for each locus. Effect sizes were estimated by mega-analysis. For summary
1186 statistics with high SE, effect sizes were re-estimated with continuity correction. Table S9.
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